Siamese power supply: 0 to ±18 V and 0 to ±1 A
Interested in DXing? Build our MF/HF marine receiver!
Also: Video Distribution Amplifier • Frost Warner • Disco Phaser • Sixty-fourwaytowdimensional • busexlelnderboard • just to name a few....
Contents

selektor ... 12-20

64-way 2-dimensional bus board 12-22
A new, perfectly symmetrical, extension bus with no less than 7 connec-
tors for those who feel that their present bus is becoming inadequate.

MF/HF USB marine receiver 12-24
Simple and inexpensive to build, this receiver is intended for the many
thousands who are interested in what's going on in the 1600 ... 4000
kHz marine band.

LED ornaments 12-30
Some decorative, colourful, electronic 'ornaments' suitable for hanging
on the Christmas tree or as a unique Christmas gift.

symmetrical power supply 12-32
Many electronic applications require a symmetrical power supply: this
one provides two precise identical voltages of 0 to ± 18 V with adjust-
able current-limiting.

tvideo amplifier 12-36
Suitable for use anywhere in a video chain, this amplifier provides three
identical outputs. Input and output impedances are, of course, 75 ohms.

missing link .. 12-39

PC board pages 12-40

cumulative index 1983 12-41

locomotive headlamp reverser 12-44
The high frequency generator for lighting model railway coaches (Elektor
- November 1982) can also be used for changing over locomotive head-
lamps according to the direction of travel.

frost warning device 12-47
With winter approaching fast, this circuit should prove useful for anyone
who has to know if and when the outside temperature is getting near
freezing point.

disco phaser ... 12-50
Studio quality phasers can be very complex and therefore very expensive,
but simpler methods do exist as this circuit proves.

banking program 12-56
A useful and instructive program for DOS Junior Computer owners:
it helps you control your finances and is also a good introduction to
indirect files.

NOVRAM: data storage without batteries 12-58
A very interesting new memory IC will shortly become available in
Britain: the NOVRAM (NON-Volatile RAM). It combines the accessi-
bility of a RAM with the power-down storage of an EPROM.

bus extension 12-62
An extension which can be used with any personal computer provided
this has a buffered output bus.

market .. 12-64

switchboard 12-69

EPS service 12-80

advertisers index 12-82

Our graphical department seem to have got into the 'Christmas spirit' cabinet a
bit early this year, but at least they managed to get the pic-
ture of our video distribution amplifier straight. This is also in
keeping with the seasonal cheer that is likely to be
abundant at this time as it can have you seeing not
double but treble. And what about a two-dimensional bus
board, or a Siamese power supply? As you may gather
from this, it is not only the graphical department who
have been at the 'Christmas spirit' a bit early!

A selection from next month's issue:
- universal active filter
- digital cassette recording
- how accurate is your watch?
- wind direction indicator
- address decoding
- fault finding in audio equipment
- EPROM programmer

12-03
CHRISTMAS PRESENTS GALORE

MICROPROCESSOR CONTROLLED MULTI-PURPOSE TIMER

Now you can run your central heating, lighting, hi-fi system and lots more with just one programmable timer. At your selection it is designed to control four mains outputs independently, switching on and off at preset times over a 7 day cycle, a.g. to control your central heating (including different switching times for weekdays, just 2 to 3 years system programme setting and start itineraries clock will do the rest.

FEATURES INCLUDE:
- Four mains outputs per channel
- One selectable lamp for driving lights, fans, clocks
- Battery backup stores timer programming and calendar in case of power failures. Memorizes 80 hours
- Display showing current power failure to alert battery power
- Dual relay control
- Engineered for smooth, silent running selection via strobe dial (slow, quick, normal, etc.)
- Display switches, indicating output is set to run or not as needed to a selected output
- Fully programmable via the strobe inputs
- Programme selection via the strobe inputs
- Passive 2 changeover switch is powered from channel 12 - 2.5 volt

Now only £39.00

Kit includes all components, PCB box, assembly and programming instructions
Order as CT6600

24 HOUR CLOCK/ APPLIANCE TIMER KIT

Switches any appliance up to 1000W and off at preset times across 24 hours, ideal kit for TV, radio, X. Lionel, DJ, radio clocks, home furniture, LEDs, earthenware and full instructions.

C1100K/R 24.90
C1100K/ with white box 26.95 (Ready Built) £22.95

24 HOUR CLOCK/ APPLIANCE TIMER KIT

Switches any appliance up to 1000W and off at preset times across 24 hours, ideal kit for TV, radio, X. Lionel, DJ, radio clocks, home furniture, LEDs, earthenware and full instructions.

C1100K/R 24.90
C1100K/ with white box 26.95 (Ready Built) £22.95

FAST SERVICE - TOP QUALITY - LOW LOW PRICES

No circuit is complete without a call to -

ELECTRONICS
11-13 Boston Road
London W7 3SJ

DISCO LIGHTING KITS

DL 1000K
This kit contain the money for the busses to a disco or stage to play music, discos and frequency of choice. Ideal for pubs, clubs, discos, shows, receptions, discos and incorporates a mains demand control.

£14.60

DL 2100K
A lower cost version of the above, featuring uni-directional, not true stereo, but with the same effect, variable by means of a pre set pot. Outputs switched on or off by a single switch, no need to reduce radio interference at all.

£8.00

Optional add ousl DLA1
4 Way selector 450W, 100W, 50W, 25W, £6.00
DL3000, Gold plated power switch in for 10amp, 30amp, 50amp, 60amp, £11.95

HOME LIGHTING KITS

This kit contains all the necessary components to power the lights for a disco or stage to play music, discos and frequency of choice. Ideal for pubs, clubs, discos, shows, receptions, discos and incorporates a mains demand control.

£14.60

HOME CENTRE

This kit enables you to control up to 16 different functions in your home, including lighting, drapes, comfort of your sitting room. The transmitter and receiver module are both enclosed in a single case, which is then decoded by receiver modules connected to the same mains. The receiver module is connected to the home appliance. The transmitter includes a 50mA switch to switch lights, heating, etc. The receiver module is connected to the mains. You can select, expand, add to your system by adding more receivers. JUST THINK OF THE POSSIBILITIES...

£25.00

STOCKING FILLERS

All spec. branded devices.

PACK (1) 650 Resistors 47 ohm to 100Mohm - 10 per pack £4.00
PACK (2) 40 x 16V Electrolytic Capacitors 10uf to 1000uf all - 5 per pack £3.25
PACK (3) 60 Polyester Capacitors 0.01 to 1, 1uf - 5 per pack £5.55
PACK (4) 45 Sub-miniature Presets 100 ohm to 1Mfwhm - 5 per pack £2.90
PACK (5) 30 Low Profile IC Sockets 8, 14, and 16 pin - 10 each £2.40
PACK (6) 25 Red LEDs (5mm dia.) £1.25

REMOTE CONTROL KITS

FOR A DETAILED BROSHUR ON REMOTE CONTROL KITS WRITE TO:-
MEG SIMPLE INFRA RED TRANSMITTER
109-111 RAYNE STREET, LONDON, E1 6BE

All PCs included.

£10.00

DISCO LIGHTING KITS

D1000K
This kit contains the money for the busses to a disco or stage to play music, discos and frequency of choice. Ideal for pubs, clubs, discos, shows, receptions, discos and incorporates a mains demand control.

£14.60

D12000K
A lower cost version of the above, featuring uni-directional, not true stereo, but with the same effect, variable by means of a pre set pot. Outputs switched on or off by a single switch, no need to reduce radio interference at all.

£8.00

Optional add ousl DLA1
4 Way selector 450W, 100W, 50W, 25W, £6.00
DL3000, Gold plated power switch in for 10amp, 30amp, 50amp, 60amp, £11.95

HOME CENTRE

This kit enables you to control up to 16 different functions in your home, including lighting, drapes, comfort of your sitting room. The transmitter and receiver module are both enclosed in a single case, which is then decoded by receiver modules connected to the same mains. The receiver module is connected to the home appliance. The transmitter includes a 50mA switch to switch lights, heating, etc. The receiver module is connected to the mains. You can select, expand, add to your system by adding more receivers. JUST THINK OF THE POSSIBILITIES...

£25.00

STOCKING FILLERS

All spec. branded devices.

PACK (1) 650 Resistors 47 ohm to 100Mohm - 10 per pack £4.00
PACK (2) 40 x 16V Electrolytic Capacitors 10uf to 1000uf all - 5 per pack £3.25
PACK (3) 60 Polyester Capacitors 0.01 to 1, 1uf - 5 per pack £5.55
PACK (4) 45 Sub-miniature Presets 100 ohm to 1Mfwhm - 5 per pack £2.90
PACK (5) 30 Low Profile IC Sockets 8, 14, and 16 pin - 10 each £2.40
PACK (6) 25 Red LEDs (5mm dia.) £1.25

REMOTE CONTROL KITS

FOR A DETAILED BROSHUR ON REMOTE CONTROL KITS WRITE TO:-
MEG SIMPLE INFRA RED TRANSMITTER
109-111 RAYNE STREET, LONDON, E1 6BE

All PCs included.

£10.00

DISCO LIGHTING KITS

D1000K
This kit contains the money for the busses to a disco or stage to play music, discos and frequency of choice. Ideal for pubs, clubs, discos, shows, receptions, discos and incorporates a mains demand control.

£14.60

D12000K
A lower cost version of the above, featuring uni-directional, not true stereo, but with the same effect, variable by means of a pre set pot. Outputs switched on or off by a single switch, no need to reduce radio interference at all.

£8.00

Optional add ousl DLA1
4 Way selector 450W, 100W, 50W, 25W, £6.00
DL3000, Gold plated power switch in for 10amp, 30amp, 50amp, 60amp, £11.95

HOME CENTRE

This kit enables you to control up to 16 different functions in your home, including lighting, drapes, comfort of your sitting room. The transmitter and receiver module are both enclosed in a single case, which is then decoded by receiver modules connected to the same mains. The receiver module is connected to the home appliance. The transmitter includes a 50mA switch to switch lights, heating, etc. The receiver module is connected to the mains. You can select, expand, add to your system by adding more receivers. JUST THINK OF THE POSSIBILITIES...

£25.00

STOCKING FILLERS

All spec. branded devices.

PACK (1) 650 Resistors 47 ohm to 100Mohm - 10 per pack £4.00
PACK (2) 40 x 16V Electrolytic Capacitors 10uf to 1000uf all - 5 per pack £3.25
PACK (3) 60 Polyester Capacitors 0.01 to 1, 1uf - 5 per pack £5.55
PACK (4) 45 Sub-miniature Presets 100 ohm to 1Mfwhm - 5 per pack £2.90
PACK (5) 30 Low Profile IC Sockets 8, 14, and 16 pin - 10 each £2.40
PACK (6) 25 Red LEDs (5mm dia.) £1.25

REMOTE CONTROL KITS

FOR A DETAILED BROSHUR ON REMOTE CONTROL KITS WRITE TO:-
MEG SIMPLE INFRA RED TRANSMITTER
109-111 RAYNE STREET, LONDON, E1 6BE

All PCs included.

£10.00
Junior–Paperware

(in 2 vols.)

The floppy disk is probably the most significant mass storage medium for microcomputers. It seems incredible that so much data can be stored on a simple plastic disk at such speed and with such precision.

Unfortunately, it is not enough to just connect a floppy disk drive to a microcomputer. Without software the hardware is useless! Where can you get all the necessary source listings, hex-dumps, and EPROM modifications? In the Elektor Junior paperware, of course.

Junior paperware 1 contains the modifications of the PM/PME EPROM and the source listings and hex-dump of the software crunker and puncher; Junior paperware 2 gives the source listing of the bootstrap loader for Ohio Scientific Floppys and the hex-dump of the EPROM.

Price £2.00 + 50p postage & packing per volume (outside U.K. £1.00).

To order, please use the prepaid order card at the end of this issue.
The NUMBER 1 catalogue for the electronics, computing, communications, audio and video engineering enthusiasts

GET YOURS NOW!!

ambit INTERNATIONAL

COMPONENTS CATALOGUE

No. 6: Summer 1983

80p

NB
Current Until 1984

Telephone: (0277) 230909 Telex: 995194 Ambit G
200, North Service Road, Brentwood, Essex CM14 4SG

Use the voucher alongside and deduct £1 from a prepaid order from the Ambit catalogue where the total value exceeds £15 (excluding VAT)

★ Alternatively — use it to obtain a FREE COPY of the Ambit Catalogue (minus the discount vouchers supplied to purchasers paying the RRP of 80p)
Universal logic: more potential in the chip

Most silicon chips are cheap because they embody conventional circuits of the sort generally needed in electronic equipment and are mass-produced. Many others are needed for special applications, but making small batches of chips designed to do specific, less common-place jobs is complicated and expensive. A new approach to this problem, based on what is called universal logic, is a design for a chip with the potential of virtually any kind of computer-logic circuit and which can be used as a 'universal' building block in electronic systems.

A new and highly original line of development in microelectronics was pioneered by Dr Stanley Hurst, a senior lecturer in the school of electrical engineering at the University of Bath, in the West of England some time ago. Microprocessors, computer control processors on tiny slivers of silicon, are cheap and plentiful; but they are so only because of immense sales. The range available from the world's manufacturers is relatively inflexible, which means that users have to round the microprocessor with other integrated-circuit devices to get the operation they require. So there is already a market, one which will increase in the mid 1980s and onwards, where makers of equipment need specific digital microelectronics devices designed to their individual needs. The difficulty here is that the cost of designing a silicon-chip device is enormous, involving many highly-skilled scientists and engineers over a very long time, even with computer-aided design, and needing very complex and expensive equipment. This huge cost is quickly recovered when there are large, world-wide sales; but such a project cannot be considered by an equipment manufacturer who needs but one or at most a few types of special digital devices designed for his particular application.

Dr Hurst is not the only one to see this. Indeed, one British firm has already won a Queen's Award for technology for what it calls its uncommitted logic array, based on blocks of conventional circuits already incorporated in each chip but not connected to each other until the customer's needs are known.

Dr Hurst's approach is quite different. Though, as he says, there has been and will continue to be tremendous development in design and manufacturing techniques, there has not been much 'evolution or revolution at the fundamental level'. If there were a general-purpose basic design, needing only the final masking procedure for arranging the interconnecting links to make a device to suit a specific purpose, the small-quantity market could be satisfied economically. So he has researched what the calls his Universal Logic. In this context, logic is the application of Boolean algebra to a digital process using binary arithmetic.

Boole was an English logician and mathematician who wrote a paper on the mathematical analysis of deductive reasoning in 1847, a paper rediscovered in 1938 and applied first to relays and switches. It was seized on in the mid-1940s for electronic computing. A computer and any similar digital device is an immense multiplicity of electronic switches, known as 'gates', which pass on binary information (that is, a 0 for 'off' and a 1 for 'on') from one or more input signals.

Lacking Power

From the evidence of digital computing it must be agreed that standard gates have been very successful, but analytically they do not satisfy Dr Hurst. In his words, they lack logical power. It is easy to see that there is an ambiguity in each gate. With an AND gate, for example, accepting inputs A and B, we can say that when one input is in the off state and the other in the on state the output is 0, but it does not indicate which one of A and B is off or on. With three input things are even more ambiguous. To put it another way, the output of NOR gate is unity only when all inputs are 0, and of a NAND gate only when all inputs are 1. The practical outcome of this lack of logical power is that quite a number of gates have to be combined to give a specified result. For example, in one simple device adding numbers there are 16 gates. A straightforward decoder (which translates from binary to ordinary decimal numbers, among other tasks) needs 50 gates to do its basic job. A circuit to compare one number with another has 33 gates. (These figures are taken from a random look at some published circuits.) In a microprocessor there may be at least 3000 gates.

The inefficient way orthodox gates operate Boolean logic has set more than one microelectronics engineer or scientist thinking of possible better circuits. But large manufacturers have had such enormous success in getting thousands of gates on a silicon chip, making it a cheap device, that they are interested only in competitive technological improvements in getting more and more on less and less. There is no reason why they should be interested in fundamental changes in logic. In the market for small-quantity, custom-built chips things are different.

Mathematical

The approach of Dr Hurst and his colleagues is fundamental yet unconventional. In trying to find out whether one could get a basic circuit that would do whatever logical step was needed, according to the connections and the programming, their thinking was primarily mathematical: it made use of esoteric techniques such as set theory, Walsh functions and so on. They were able to show that a universal logic gate was indeed a possibility. With two input variables there are 16 possible output functions (see table 1, which is an exercise to see what functions could be obtained from various gates). For three input variables there are 256 possible output functions. Could a single circuit cope?

Calling the circuits ULG2 (universal-logic gate for two input variables) and ULG3, Dr Hurst has shown that an array of ULG2 gates will do all the logical steps possible even for three input variables and that one ULG3 will be capable of realising all

<table>
<thead>
<tr>
<th>Inputs</th>
<th>All possible output functions f(x, y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>x1 x2 f0 f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15</td>
<td></td>
</tr>
<tr>
<td>0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1</td>
<td></td>
</tr>
<tr>
<td>0 1 0 0 0 0 0 0 1 1 1 0 0 0 1 1 1 1</td>
<td></td>
</tr>
<tr>
<td>1 0 0 1 1 1 0 0 1 0 0 1 0 1 0 0 0 0</td>
<td></td>
</tr>
<tr>
<td>1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0</td>
<td></td>
</tr>
</tbody>
</table>

Functions which can be obtained from various gates with two inputs. For three input variables there are 256 possible output functions.
1

Figure 1. Basic circuit of a ULG2, comprising two transistors, two diodes and three resistors. Although only two input variables are applied, three output connections (s, t and r) are provided. This is to do with the set-theory mathematics of the device.

256 outputs — not all at once, of course, for the result depends on which input terminals are used and how the circuit internal wiring is connected.

The number of ULG2 cells needed to realise all the 256 functions of three input variables has been calculated and compared with the equivalent figure for orthodox gates. The results are shown in table 2. We can see that the ULG2 is roughly twice as powerful as a NAND or a NOR. Incidentally, it should be noted that although a ULG2 may have only two independent variables as input, there may be three or four physical connections. Figure 1 shows a circuit for a ULG2. It has two transistors, two diodes, and three resistors. Though there are but two input variables, there are three output connections. This is to do with the set-theory mathematics of the device and need not concern us.

The circuit shown brings in electronics, which has so far not been discussed and need not be considered in detail. A gate is made of transistors, diodes, resistors and, sometimes, capacitors. Up to now most logic gates have depended on bipolar technology, that is, transistors with two possible states. This is the one represented in the diagram. A newer technique is based on MOS (metal-oxide-semiconductor) devices, which involve far fewer stages in manufacture and avoid the 'cross-talk' between adjacent conductors. Dr Hurst considers that bipolar methods will die out in the next decade and be replaced by MOS circuitry.

The practical problem is concerned with how big an area of silicon is used up in a ULG as compared with orthodox gates. It is easily seen that a ULG3 would occupy much more space. So is it better to use an array of identical ULG2s or rely on a ULG3? When such matters are decided there will be available a set of universal-logic gates which can be supplied as units. All that the designer then has to do is produce a suitable mask, a task made simple by computer-aided design, which will deposit the appropriate interconnections on the chip. The cost of design for a custom-made device will therefore be drastically reduced, even if the ULG2s are themselves more expensive than orthodox gates — another question being researched. Furthermore, as Dr Hurst has said, a considerable amount of special logic design in ULG form can be undertaken and a library of standard interconnection details built up, ready for individual customer requirements.

It is a long-term research development programme for which full-time staff will be recruited. It could lead to a commanding position in the ever-growing use of silicon chips for specific purposes.

C. L. Boltz "SPECTRUM 171"

Taking the heat out of electronics

Air cooling was traditionally used to cool electronic units but as component densities are continually increased in new designs of equipment so the problem of cooling has grown to the point where liquid cooling is having to be adopted. This is because of its ability to offer higher heat removal rates. However, liquid cooling has brought its own constraints because its pipework, pumps and fluids make it much more difficult for service engineers to get to the electronic components.

Now the dynamics group of British Aerospace claims to have solved the problems with what it describes as a 'new concept' in liquid cooling systems. Known as Flexiwall, the BAe system is subject to a provisional patent application and, at an international design engineering exhibition recently held at Birmingham in the English Midlands, has been chosen as a good example of British innovation.

A BAe spokesman said: 'The major benefit of Flexiwall is that uninterrupted access can be obtained to electronic units for servicing or replacement without the need to drain or disconnect the cooling system, which is entirely separate and self-contained. Other attributes are that it is a low-pressure system, silent in operation, and is inexpensive to manufacture and install. In terms of volume occupied by a Flexiwall system, it is significantly more effective in removing a given quantity of heat than air cooling systems of comparable capacity.

Tests with a prototype system have shown that an electronic unit containing a large number of components tightly packed together and dissipating four kilowatts of heat can be maintained at component temperatures below 70 degrees C.

This is achieved by circulating a cooling fluid such as water, glycol or methanol through a convoluted chamber which expands like a bellows to allow a flexible face to move forward until it touches the electronics equipment. It will then mould itself to the shape of the component and the cooling fluid rapidly removes heat being conducted from inside the electronics unit. When the pressure on the cooling fluid is switched off the Flexiwall face retracts elastically clear of the equipment being cooled.

This ability to retract when not being used to cool the unit means that components can be freely removed from their racks for servicing or replacement. When maintenance work is completed the Flexiwall system is simply switched on and the stainless steel foil face of the cooling chamber advances to regain contact.

Made in Britain/John. F. Webb

(n95s)
The first time a microprocessor bus system is used it seems enormous, but before long it begins to seem a bit limited, and then cramped, and finally completely inadequate. So after our first bus with 3 connectors, and the second with 5, we now introduce the new extension bus with no less than 7 connectors, which, unlike its predecessors, is perfectly symmetrical.

64-way bus board
and service aid in µP systems

The new Elektor universal bus differs from its predecessors in that it has seven 64-way female connectors, plus a male connector at one end (the 'input') and a female connector at the other end (the 'output'). In addition to this, its upper side (connector side) is copper-clad and acts as a screen. The layout of the board also allows easy interconnection between lines.

An extension for testing
As can be seen from figure 2, the bus board is in eurocard format. This is neither luck nor simply the consequence of the number of connectors used. It was, in fact, a deliberate choice to allow us to use the new board as a service aid. Imagine a micro computer constructed of eurocard-format boards mounted on a bus board that is hidden somewhere at the back of a 19 inch rack. What happens if one of these cards has to be tested and repaired? Without removing everything from the case the cards are inaccessible. This is where the new bus comes in. The extension board can be plugged in in place of the suspect one which is, in turn, plugged into the female connector on the bus board. This leaves the board to be tested completely outside the case of the computer and thus perfectly accessible. Obviously this makes children's play of something that would otherwise be quite difficult. This method of using the extension bus to counter the problems of testing in tight spaces can also serve as an aid for checking signals on the bus itself, with an oscilloscope or logic analyzer for example.

576 pins to solder
As we have already said there are 64 lines and there is no interconnection between any pin in an 'a' row and a neighbouring 'c' pin. At least, that is the idea. Careless soldering could inadvertently change this. Bear in mind that the vertical (1 . . . 7) connectors are polarized and therefore must be mounted the right way round. Connector 0 (the input) is a male right angle connector (note that the 'a' and 'c' rows are inter-

Parts list

Seven 64-way straight female connectors (a + c rows), DIN 41612
One 64-way right-angled male connector (a + c rows), DIN 41612
One 64-way right-angled female connector (a + b or a + c rows) DIN 41612
Two metal brackets (for mounting connector no. 8)
Mounting hardware and ideally guide rails

Figure 1. This is how the connectors are mounted. Particular care must be taken with the two outside connectors.

12-22
changed).

As there are two types of angled female connectors available, one with 2.5 mm between the rows and the other with 5 mm, we have made the printed circuit board compatible with both 'a + b' and 'a + c' types.

Remember to connect the earth plane on the upper side of the board to the '0 V' pins of connectors 0 and 8!

This bus can easily be used for the Junior Computer, but in this case connector no. 8 should be omitted. In its place, the output connector of the interface card should be connected by means of crossed wires, so that the 'a' row of the interface card is linked to the 'c' row of the bus, and vice versa.

Figure 2. The copper-clad side of the board acts as an earth plane. Connectors 0 and 8 mount parallel to the board whereas all the remaining (polarised) connectors mount vertically. If cards are to be fitted and removed frequently the female connectors should be provided with guide rails.
For some time now, a number of our readers, fervent DXers, have been asking for a follow-up to our short-wave SSB receiver (June 1982). DX literally means ‘distance X’ or ‘distance unknown’ and DXers are therefore hobbyists interested in long-distance radio communication (transmission and/or reception). Apart from these enthusiasts there are thousands of other people interested in listening to what goes on at sea and it was with them in mind that we thought it would be a good idea to design an inexpensive receiver for operation in the 1600...4000 kHz band.

MF/HF USB marine receiver

Radio traffic in the 1600...4000 kHz band comprises CW (ICW and MCW, often just called ‘morse’), RTTY (radio teletype), radio facsimile, and plain telephony. For most DXers, morse and telephony are, of course, the most interesting and it is these that the receiver described in this article is designed to process.

In principle, most of the 1600...4000 kHz band is intended for medium range marine communications: longer distances are served by maritime bands on higher frequencies. A substantial part of the traffic in this band is concerned with

- weather reports
- warnings to shipping
- storm and gale warnings
- traffic lists

These are all services supplied free to shipping by the various national administrations and which can therefore be listened to by anyone. It is as well to point out now that it is NOT allowed to listen in to private telephone conversations and like traffic: if you do by accident, NEVER repeat it to third parties.

The services mentioned above are invariably preceded by an announcement on 2182 kHz, the international distress and call frequency in this band. This is therefore the frequency to which DXers tune in. Although not so pleasant for those at sea, the worse the weather, the more lively things become for the DXer. The number of weather reports and warnings to shipping is approximately directly proportional to the wind force! However, even when the weather at sea is good, there is much of interest going on...

Traffic lists are lists of names of ships for which a particular coast station has messages. Such lists are transmitted regularly throughout the day, always preceded by an announcement on 2182 kHz. The announcement includes the information at which fre-
frequency the coast station is about to transmit the lists. If a ship finds that its name is included on the list, it will call the coast station — again on 2182 kHz — to arrange the frequencies on which the messages will be transmitted and received.

A simple chart of the most important European coast stations is shown in figure 1. It should be possible to receive most of these stations when conditions are good. Unfortunately, frequencies in the 1600...4000 kHz band are affected by the so-called D-layer which, in contrast to other layers such as the E and F, absorbs rather than reflects them. As long-distance radio communication depends heavily on reflected waves, it is therefore badly curtailed in the presence of the D-layer. However, after sunset this layer disappears and reception over much longer distances than during daytime becomes possible. The evening hours are therefore best for DXing in this particular band.

So much for a short introduction to the why, where, and how? Now for the actual receiver...

Direct conversion

As we wanted the receiver to give good performance and yet be relatively simple and inexpensive to build, we opted for a direct-conversion design. For those who have forgotten (or never read) our June 1982 articles ‘the principles behind an SSB receiver’ and ‘compact short-wave SSB receiver’, here is a short resume.

The basic principle of a direct-conversion receiver is that the radio signal is converted into an audio signal without the use of intermediate frequencies. The layout of such a receiver is strongly reminiscent of that of a superheterodyne but the oscillator frequency is equal to the
received frequency. This makes it possible for the oscillator to operate as BFO (beat-frequency oscillator) and thus function as the demodulator for SSB and DSB signals. The resulting advantages are that the circuit is much more straightforward than that of a superhet SSB receiver, the construction, operation, and calibration are noticeably simpler, and, last but not least, the cost is lower. Of course, there are disadvantages, such as susceptibility to a.f. image reception, and the operational frequency range being somewhat smaller than in superhets but as we set out to keep the design simple and inexpensive, these do not negate the advantages.

It should be noted that the receiver is designed for processing the upper sideband (USB) as this is the mode of modulation internationally agreed to be used for maritime communications in the 1600 ... 4000 kHz band.

The block schematic

Our design consists of a tuned input circuit, a buffer, oscillator, mixer, low-pass filter, a.f. amplifier, and sound transducer as can be seen in figure 2. Input and oscillator circuit tuning are, of course, 'ganged'. For those who want a little more than a 'minimum receiver', there are facilities for connecting an additional low-pass filter (to give improved selectivity), and a frequency counter (to provide a precise frequency read-out).

The circuit diagram

The various blocks of figure 2 can be readily recognised in the circuit diagram in figure 3. The tuned input circuit consists of L1, C24, and D6. T1 functions as the buffer, and IC1 contains the mixer and oscillator. The tuned oscillator circuit comprises L2, C23, and D7. The low-pass filter consists of just one capacitor, C7, and the a.f. amplification is provided by IC2. The input and oscillator circuits are tuned by means of varicaps D6 and D7 respectively.

These variable-capacitance diodes derive their control voltage from a divider consisting of P1, P2 and R1 ... 4. The actual tuning is carried out with P1 (coarse) and P2 (fine). Both these potentiometers are 10-turn types. Preset P3 ensures correct tracking of the two tuned circuits. The aerial can be connected directly to the aerial input on the printed-circuit board, or inductively by a secondary winding on L1. The buffer (T1) between the input circuit and the mixer is a FET source-follower which, because of its high input impedance and low gate-source capacitance, ensures that damping of the input circuit is kept low. Because of that, input selectivity is quite good and the risk of spurious mixing products is small.

The signal at the source of T1 is fed to pin 7 of IC1, which is one of the inputs of the quadrature multiplier (that is, mixer) contained in that IC. The amplifier in the SO41F (outputs at pins 6 and 10) which is internally coupled to the mixer, is used as the active part of the oscillator. The tuned oscillator circuit is connected to the input (pin 14) of the internal amplifier via C9. The a.f. output of the mixer is taken to the audio amplifier, IC2, via a simple low-pass filter (C7) and volume control P4. The a.f. amplifier can drive high or low impedance loudspeakers or headphones. The power supply consists of the usual bridge rectifier, D1 ... D4, a smoothing capacitor, C21, and a voltage regulator, IC3. Resistors R11, R12 and capacitors C17 ... 20 ensure minimal interference from the mains supply. The LED, D5, functions as the on/off indicator.

Construction

The receiver is constructed on a double-sided printed-circuit board as shown in figure 4. As you probably know, double-sided means that the component side of the board is provided with a copper layer which functions as an earth plane. All components connected to earth must therefore be soldered at both sides of the board.
An accidental advantage of the copper layer is that it serves as a heat sink for IC3 which can thus be mounted directly onto the board (with the aid of some heat-sink compound). Assuming that neither the mounting of the components nor the connecting of the potentiometers, power supply, and so on will give you any problems, we turn to some specifics and hints. First of all, the coils: these will have to be wound by hand. Fortunately, neither of them is bifilar, nor do they have taps or coupling coils (but see under aerial!). Coil L1 consists of 25 turns enamelled copper wire SWG 30 on a ferrite rod of 100 x 10 mm. The coil should be wound so that it can be shifted along the rod which can, for instance, be achieved by laying the turns onto a tube of thin cardboard around the rod. The whole is then mounted onto the board by means of two spacers and some string: holes for securing the string are provided. Coil L2 consists of 50 turns of the same wire wound evenly onto a T50-2 toroid. The whole assembly is mounted onto the board with a nylon screw, nut, and washer.

Potentiometers P1 and P2 must be 10-turn types. We know there will be some of you who, on cost considerations, will try to use standard types: we must, however, strongly advise against this, because tuning will become almost impossible and certainly will lead to very disappointing performance. If you must economize, use a 10-turn for P1 and replace P2 by a wire bridge. Tuning will then be a little more difficult than it should be, but it will be possible. The varicaps D6 and D7 also present a little problem: they are manufactured as a pair and must therefore be split into two (electrically only!). Often they carry no indication as to cathode and anode, and these have thus to be ascertained with the aid of a multimeter. This can be done by comparison with a known diode.

To ensure good stability, it is advisable to house the entire receiver in a closed metal case. It is also advisable to screen the input stages from the remainder by fitting a tin or brass partition where indicated by a dotted line in figures 3 and 4.

Figure 3. The circuit diagram is conspicuous by its simplicity: one FET, two ICs, a stabilizer, and some passive components. Tuning is effected by means of varicaps D6 and D7.
Parts List

Resistors:
- R1, R13 = 1 k
- R2, R3 = 22 k
- R4 = 100 k
- R5, R8, R9 = 220 k
- R6 = 820 Ω
- R7 = 3k9
- R10 = 10 Ω
- R11, R12 = 220 Ω
- R14 = 330 Ω

Capacitors:
- C1 = 4m7
- C2, C4, C5, C10, C16 = 100 n
- C3 = 1 n
- C6, C12, C22 = 1 μ/16 V
- C7, C11 = 22 n
- C8 = 1 μ/10 V
- C9 = 3p3
- C13 = 10 μ/6 V
- C14 = 1 n
- C15 = 470 μ/10 V
- C17, ..., C20 = 47 n
- C21 = 1000 μ/35 V
- C23, C24 = 40 p trimmer

Semiconductors:
- T1 = BF 256C
- D1, ..., D4 = 1N4001
- D5 = LED
- D6, D7 = KV 1236
- IC1 = 5441P
- IC2 = LM386
- IC3 = 7812

Miscellaneous:
- P1, P2 = 10 k x 10-turn potentiometer
- P3 = 100 k preset
- P4 = 10 k log potentiometer
- L1 = 25 turns enameled copper wire SWG 30 on 100 x 10 mm ferrite rod
- L2 = 50 turns enameled copper wire SWG 30 on T50-2 toroid
- Tr1 = mains transformer 18 V / 250 mA
- S1 = mains on/off switch

Figure 4. The printed-circuit board is double-sided. The copper layer at the component side functions as an earth plane.
Figure 5. The selectivity can be improved by fitting this low-pass filter between C8 and volume control P4.

Calibration
The receiver can be calibrated without the use of expensive test instruments.
- Use a length of wire of not less than three metres as a test antenna and connect this to the aerial terminal on the printed circuit board.
- Set C23, C24, and P3 to their mid-position.
- Turn P1 to the lowest frequency (lowest tuning voltage) and then seek a broadcasting station or interference whistle in that region (of about 1600 kHz).
- Shift L1 along the ferrite rod until the received signal is strongest.
- Turn P1 to the highest frequency band (3500 . . . 4000 kHz), seek a station, and adjust C24 for maximum signal strength.
- The receiver should amplify the 80 metre amateur band (3500 . . . 3800 kHz). If it does not, adjust C23 until it does.
- Once the range has been achieved, the tracking of the input and oscillator circuits must be set. Tune the receiver to about the middle of the range (say, 2500 kHz), seek a station, and adjust P3 for maximum signal strength. If this means a substantial adjustment of P3, it is wise to repeat the entire calibration procedure. When the receiver has been calibrated correctly, its sensitivity is of the order of 1 μV, which is quite good. However, because the transmitter power of most vessels is not high, it pays to have a good aerial. This should be at least 5 metres, but the longer, the better! If the length goes above, say, twenty metres, it is advisable to use inductive aerial coupling as already stated. The coupling winding should consist of 1 . . . 3 turns enamelled copper wire SWG 30 wound around the 'earthy' end of L1.

Extensions
Connect a frequency counter to terminal G on the printed-circuit board (where the oscillator voltage of about 250 mV is present) to obtain a precise frequency read-out. Connecting a counter may, however, cause the oscillator frequency to shift. If the sensitivity of the counter is good, this shift may be reduced by fitting a large capacitor between the counter output and earth. This capacitor should be so large that the counter just remains stable. Better selectivity can be achieved by fitting the low-pass filter shown in figure 5 between C8 and P4. This filter can be readily constructed on a small piece of prototyping (vero) board. Its pass band shown in figure 6 was obtained from a spectrum analyzer: 65 dB additional attenuation at 6 kHz off-tune is not bad for a receiver intended for beginners!
Around this time of the year even the most hardened of electronic hobbyists is likely to be thinking of a completely different type of circuit than the usual ones. Now a circuit does not necessarily have to do anything, except maybe play a game or simply look decorative. Of course, electronics is totally suited to this sort of task and, as we have always known, electronics can just be good fun.

LED ornaments

The purpose of this article is to give any "not entirely sane" handymen among you a few ideas. What we have in mind is making decorative, colourful 'LED ornaments', suitable for hanging on the Christmas tree, or as an exclusive brooch (with a battery in an inside pocket) or something similar. To anyone not familiar with electronics, especially children, it could be something totally fascinating, and it is also an idea for a unique Christmas present.

What we really mean is simple figures, such as those shown in figure 1. They consist of nothing more than a group of LEDs arranged in a certain pattern. Exactly how it is made and how big it is a matter for each to decide for himself. It could be anything from a simple brooch to a fully fledged star with all the options. We opted for a star, cut from a piece of plywood with holes drilled for the LEDs and with a good coat of a suitable colour paint. We ended up with something like that shown in figure 2. This is only intended as an example as it could be constructed in any number of ways.

Flashing electronics

Simply having a display of LEDs is all very well, but as an electronics hobbyist you are more or less obliged to make the LEDs flash. Only then can it really be called 'eye-catching'. It is not at all difficult, but there are a few basic elements required. In its simplest form the electronics needed consist of an oscillator for the flash timing, a divider, and the LED driver. A few suggestions are shown in figure 3.

If there is not very much room to play with then one of the four oscillators from figure 3a, the divider (figure 3c) and a few of the driver stages drawn in figure 3d are all that are strictly essential. If there is more space available, taking a bit more time and a few more components, the circuit can be expanded.

Instead of using one oscillator, for example, four switchable oscillators could be substituted, as figure 3a shows, so that different rhythms can be chosen. The clock frequencies used is a question of taste. C1...C4 can have any value from 100 n to 100 μ and R1...R4 can be any resistance from 10 k to 10 M. That gives a range of speeds from very slow to very fast. The wiper of the four-way switch is connected to the clock input (CL) of the divider IC (figure 3c).

The oscillator of figure 3b is also a nice possibility. This automatically supplies different rhythms of its own accord, without any need for switching. When S1 is open the CL output alternately supplies high and low frequency clock pulses. If S1 is closed the high and low frequency pulses follow each other at random.

The divider circuit of figure 3c requires little comment. This is a straightforward appli...
cation of a well known decade counter IC.
If all ten outputs are to be used, then the reset input (pin 15) must be connected to ground. Otherwise this pin should be connected to one of the 0...9 outputs, so that whenever this output is reached the counter goes back to '0'.

The LEDs
Now the LED drivers. As the decade counter of figure 3c cannot drive the LEDs directly, each output must be followed by a transistor stage. The simplest version is shown in figure 3d. Each transistor can drive a number of LEDs connected in series. The value of the series resistor can be calculated by subtracting the total voltage drop across the LEDs from the supply voltage and then dividing this by the current that is to flow in the LEDs:

\[R_x = \frac{U_b - (n \cdot U_{LED})}{I_{LED}} \]

Both \(U_{LED} \) and \(I_{LED} \) depend on the type used. The voltage drop across red LEDs is generally 1.5 V; for yellow it is approximately 1.9 V and for green the norm is about 2.2 V. The current required can vary between 10 and 50 mA.

An expanded LED driver stage is shown in figure 3e. In this case transistor T1 is protected by the current limiting components, T2 and R2. Given a supply of 15 V, this stage can drive a maximum of six and a minimum of three LEDs in series. Fewer LEDs cannot be used here or T1 will have to dissipate too much current. The LED current is determined by the choice of R2. The value of this resistor is easily calculated by dividing the voltage drop across this resistor (= the base/emitter voltage of T1 = 0.6 V) by the current required:

\[R_2 = \frac{0.6}{I_{LED}} \]

From theory to practice
By now you should have all the information you need to start making your own original LED ornaments (except maybe which end of a fret saw is the sharp end).

The power supply can in principle be kept very simple, but it should not be underrated. The oscillator and divider certainly require little current, but the LEDs need quite a bit more. If a voltage of 15 V and the full ten channels are to be used, then for a LED current of 10 mA the supply must be able to provide at least 100 mA. If the LEDs draw even more current the total consumption can rise to as much as 0.5 A (if \(I_{LED} \) is 50 mA). The final design of the power supply therefore depends on the number and type of LEDs used.

Finally... while we are on the subject of LEDs. There seems to be an ever-increasing number and variety of LEDs available today and you may be wondering which to use. The majority are perfectly suitable for our purposes here, but the best are the diffused coloured types. These have a wide viewing angle and remain visible from a distance even if you are not standing straight in front of them.
Anyone with some knowledge of electronics knows that to be able to experiment with operational amplifiers, or to check circuits using them, a symmetrical power supply is virtually indispensable. The power supply described here provides two precise IDENTICAL voltages which are set by ONE potentiometer and ADJUSTABLE current-limiting.

symmetrical power supply

0 to ± 18 V;
0 to ± 1 A

The specification of a symmetrical mains power supply must include the provision of two precise, identical voltages (one positive, the other negative) which can be set with ONE potentiometer. It must be possible to set the lowest voltage to 0 V. And, perhaps most important of all, the unit must have adjustable current-limiting, which on overload reduces or switches off BOTH currents.

We have not often used the LM 317 (positive) and LM 337 (negative) adjustable voltage regulators in our designs and a few words about these devices may, therefore, not come amiss. They are very easy to use and require only two external resistors to set the output voltage and an output capacitor for frequency compensation. In addition to higher performance than fixed regulators, they offer thermal and electrical overload protection, current limiting, and safe-area protection. The overload pro-

Figure 1. The three-terminal integrated, adjustable regulator type LM 317 operates as a series regulator. The required output voltage is obtained by adding voltage divider R1/R2. The minimum load current is set to 10 mA by means of R1.
tection circuitry remains fully functional even if the adjustment terminal is disconnected. The 'K' versions are packaged in the standard TO-3 transistor housing. The operating temperature range is 0 ... 125°C. Further features are shown in table 1.

For those who may have forgotten: a series voltage regulator is a circuit in which a 'ballast' transistor, controlled by an amplifier, is used as a preset resistor in series with the load. This transistor absorbs any superfluous voltage.

Principle of operation

The operation of a voltage regulator (in this case the LM 317) may be described with the aid of figure 1 in which an operational amplifier (opamp) drives a power darlington transistor. The opamp and the circuit providing the d.c. bias for the regulator are arranged so that the quiescent current flows to the output of the regulator instead of to earth (hence no earth connection!). The reference voltage of 1.2 V appears between the non-inverting input of the opamp and the ADJ(ustment) pin. The quiescent current for the reference-voltage source is set to 50 μA and emerges from the ADJ pin. In actual operation, the output voltage of the IC is equal to the voltage at the ADJ pin plus 1.2 V. If you therefore connect the ADJ pin to earth, the regulator functions as a 1.2 V reference voltage source. Higher voltages are arranged by means of voltage divider R1/R2. As the reference voltage appears across R1, a current of 10 mA flows through the voltage divider. This current also flows through R2 and thus increases the voltage at the ADJ pin. The real output voltage is therefore given by the formula

\[U_{out} = (1.2 \times (1 + R2/R1) + 50 \times 10^{-6} x R2) V \]

As we're dealing with a series regulator, the quiescent current is taken off the load current. If the latter becomes very small, the regulation is affected. It's for that reason that the minimum load current is set (by means of R1) at 10 mA.

The circuit

The complete circuit diagram in figure 2 is, of course, more complex than that of the regulator in figure 1. But remember what we said at the beginning: it must be possible to preset both the positive and the negative voltage with one potentiometer, the output voltage must go down to 0 V, and the current limiting must be adjustable.

Regulation of the positive output voltage is effected by an LM 317 and that of the negative output by an LM 337. Because of the voltage drop across diodes D7 and D8, the wiper of potentiometer P4 is at -1.2 V, provided T1 does not conduct. Substituting the minimum and maximum values of P4 in the formula

\[U_{out} = (1.2P4/120 + 50 \times 10^{-6} x P4) V \]

a range of output voltages of 0 ... 22 V is obtained.

The setting of both output voltages to the same numerical value is arranged by opamp IC8. As the non-inverting input of this IC is at earth potential, its output will closely follow the voltage at its inverting input. This ensures that, provided P5 is adjusted correctly, the values of the negative and positive

![Circuit Diagram](image-url)
output are the same. Capacitor C12 slows down the regulating action of IC8 to some extent so that any tendency of IC7 to oscillate is effectively suppressed.

It should be noted that the operating voltage of IC8 is asymmetrical: +5 V and -25 V. This gives, of course, the maximum operating voltage of 30 V for this IC. The asymmetry is necessary to ensure that the output of IC8 can go down to at least -18 V, otherwise it would not be possible for the negative output voltage to reach this value.

Voltage regulators IC1...3 merely provide the stabilized supply voltages for the op-amps. The input voltages for the adjustable regulators, IC6 and IC7, are provided by capacitors C1 and C2 respectively. These electrolytic capacitors are as large as possible to ensure that the ripple voltage is kept to a minimum and that the rectified voltage does not drop below the required input level of the regulators.

Last, but not least, the adjustable current limiting. In the positive leg this is effected as follows. A reference voltage derived from voltage divider R5/R2 is applied to the non-inverting input (pin 3) of opamp IC4. If the ratio of voltage divider P3a-P1-R6/R1 is the same as that of R5/R2, the voltage at the inverting input (pin 2) at maximum load current will be smaller than that at pin 3 (because of the voltage drop across current sensing resistor R9). The output of the opamp becomes positive and switches on.
transistor T1. The resulting current through T1 ensures that the output of both IC6 and IC7 is returned to the predetermined reference level. The level at which current limiting commences is set by potentiometer P3a.

The current limiting action in the negative leg is similar, but here the voltage level at the non-inverting input (pin 3) of IC5 becomes greater than that at pin 2 at the onset of current limiting. Again, the opamp switches on transistor T1 and from then on the action is as described for the positive leg. P3 is a stereo potentiometer so that the current limiting can be set to commence at the same level in both legs.

Construction and calibration

The use of the printed-circuit board shown in figure 3 makes the mounting of most components simplicity itself. The usual care should be taken to observe polarity where necessary and to avoid dry soldering joints. The remainder is primarily a problem of constructing a suitable housing for the unit.

The front panel should be provided with holes for P3 and P4, the output terminals, and the mains on/off switch. The rear panel must have holes for fitting the adjustable regulator-ICs and their heat sinks, and mains fuse. Once this work has been done, the wiring between all these components and the printed-circuit board can be completed. When the wiring has been completed and carefully checked, the unit can be calibrated.

- Set presets P1 and P2, and potentiometer P3, to minimum resistance – check this with an ohmmeter.
- Connect a voltmeter to the positive-output terminal; if a second one is available, this may be connected to the negative-voltage terminal. (Be careful to observe polarity!)
- Switch on the mains, and check that adjusting P4 causes a change in both output voltages. Adjust preset P5 to give equal numerical values for these voltages.
- Switch off the mains, and connect a 1Ω/5 W resistor to both the positive and negative output terminals, in parallel with the voltmeter(s).
- Switch on the mains and adjust P4 for maximum output voltage(s). Set P3 so that the voltage across one of the 1Ω resistors increases; check that when P3 is turned back, the voltage decreases.
- Set P3 for maximum voltage across the 1Ω resistors and then adjust P1 and P2 so that the voltage across these resistors is exactly 1.000 V. The current will then, of course, be exactly 1 A. In our laboratory prototype, it was possible with P3 to set the current limiting between 15 mA and 1 A. Many of you will find it worthwhile to build in the meters shown in figure 4. The reading and setting of voltage and current levels is then much easier. Do not, however, calibrate these instruments until you are sure that the supply unit is functioning satisfactorily.

Parts list

Resistors:

R1...R4 = 8k2
R5,R7,R11,R12 = 27 k
R6,R8 = 22 k
R9,R10 = 0.82 Ω/3 W
R13,R14 = 1 k
R15,R16 = 120 Ω
R17,R18 = 100 k
P1,P2 = 10 k preset
P3 = 1 k linear stereo potentiometer
P4 = 2k2 linear preset
P5 = 1 k preset

Capacitors:

C1,C2 = 4700 µF/63 V electrolytic
C3,C4,C5 = 10 µ/16 V tantalum
C6,C7 = 2n2 ceramic
C8,C9,C11,
C13 = 10 µ/30 V tantalum
C10 = 10 n ceramic
C12 = 1n8 ceramic

Semiconductors:

D1...D4 = 1N5408
D5,D6 = 1N4148
D7,D8 = 1N4001
T1 = BC141
IC1 = 7812
IC2 = 79L0
IC3 = 7805
IC4,IC5,IC8 = LF 356
IC6 = LM 317K
IC7 = LM 337K

Miscellaneous:

S1 = double-pole mains switch
F1 = miniature fuse holder and fuse 0.5 A
T1 = mains transformer
2 x 18 V/1.5 A
Heat sinks for two TO-3 ICs
Printed circuit board
83121
Output terminals
Four 100 µA meters as required
Extra amplification is desirable in almost every extended video chain. We are talking about, for example, compensating for losses in cables, strengthening the signal from a not very sensitive input, or other applications where signal levels have to be tuned in to each other.

This simple amplifier is ideal for all these applications. Furthermore it also acts as a distributor as it is equipped with three outputs as standard.

A video amplifier rarely needs a high gain. By 'high' we mean a factor of 100 or more, as is the norm for audio pre-amplifiers. For adjusting video levels a gain factor of 2 or 3 times is generally called for - maybe a bit more in a few cases.

In this circuit we have made the amplification adjustable between 1 x and a good 4 x, so that the amplifier is suitable for almost any situation where boosting is needed. The maximum output voltage is 4 Vpp, and the input and output impedance is, of course, set at 75 ohms.

As well as being a normal amplifier, this circuit can also be used as a video signal distributor, which is handy if more than one channel in a video chain are to be driven from one video signal. As we have already said, the amplifier has three outputs. However, that is not to say that they all have to be used. The circuit can also be used with just one or two outputs.

Now the only data needed to complete the technical specification of the amplifier is the bandwidth. This is at least 5 MHz providing the specified semiconductors are used.

The circuit diagram
A good video amplifier need not be very complicated, as is shown by figure 1a. The circuit contains a very ordinary two-stage amplifier (T1/T2) followed by an emitter follower. The transistors used are simply normal BC and BD types because these can quite easily fulfill the required conditions for adequate bandwidth. A nice side-effect is, of course, that these transistors are relatively cheap, and in this case expensive HF types are simply not needed.

The input impedance is set to 75 ohms by R1. The signal travels from the input via C2 to the base of T1. Because the content of the video signal can change a lot, the d.c. current setting of T1 is provided by a small circuit (R3, P1, C1, R2 and D1). The maximum output voltage swing of the amplifier can be set using P1. We will deal with setting this potentiometer later. The base of transistor T2 is connected directly to the collector of T1 thus forming a direct coupled amplifier, the amplification of which can be varied with potentiometer P2 in the feedback network. The amplification factor is defined by the ratio between R5 and the resistance of the R6/R7/P2/C3 network. With the values we have used, P2 covers a range of 1.95 x to 8.7 x. With the
normal output load of 75 ohms the final amplification is effectively halved, so that the actual range is from 1 x to just over 4 x.

The T1/T2 stage is followed by a ‘bigger’ transistor (T3), which has to ensure the desired low frequency output impedance. This demands a very small emitter resistor (R9) and an accordingly high collector current. The amplified signal leaves the circuit by three 75 ohm outputs, made up of C5/C6/C7 and R10/R11/R12.

If only one or two of the three outputs are needed, then obviously the power consumption of the circuit will be correspondingly less. The greatest part of the current consumption is in R9. If three outputs are used R9 must be 56 ohms, with two outputs it can be increased to 82 ohms and with one output 150 ohms is sufficient. The total current consumption for the three conditions is then 150 mA, 110 mA and 70 mA respectively.

Adjustment

There are two ways of adjusting P1. The ‘normal’ method, which gives satisfactory results 90% of the time, and an alternative for setting it up ‘by eye’. In the first case, P1 is simply adjusted so that there is about 1 V at the base of T1. The voltage across R8 should then be about 7.5 V (with no signal).

The alternative method is somewhat more involved. Start by setting P1 to mid position and with an input signal of about 1 Vpp reduce the amplification to minimum with P2. Then a test image is fed into the input (from a video recorder, for example), and a TV set or monitor is connected to the output. P1 is now adjusted so that all distortion is just eliminated.

Another point which may be of importance. Although input signals a bit higher than the nominal 1 Vpp are not a direct disadvantage to the amplifier, they are actually of little use. Significantly higher voltages can therefore better be reduced. This can be done by experimenting with R5 and using a bigger resistor here (the maximum amplification then decreases) or by placing an extra resistor in series with the input, so that it forms a voltage divider with R1. Then the value of R1 is reduced so that the total resistance of the extra resistor and R1 add up to 75 ohms.

Construction

A simple power supply for the amplifier is easily built, as figure 1b shows. Both amplifier and power supply are constructed on the same printed circuit board, the layout
of which is shown in figure 2. ‘Construction’ is really only a matter of fitting everything correctly to the printed circuit board and soldering it there. However, there are a few points to note. When three outputs are in use voltage regulator IC1 has to work reasonably hard and because of this it needs to be mounted on a heatsink. The 75 ohm resistors (marked with an asterisk) are not standard E12 values. They actually consist of two 150 ohms connected in parallel.

Very little needs be said about mechanical construction for this project. Depending on circumstances, it could be built into the case of some existing equipment, or it could be mounted in a case of its own. The only important point is that the ‘amplification’ pot must be freely accessible.

Figure 2. The printed circuit board contains both the amplifier and power supply. Only the mains transformer is not mounted on the board.

Parts list

Resistors:
- R1, R10 . . . R12 = 75 Ω
- R2 = 10 k
- R3 = 8k2
- R4 = 1 k
- R5, R7 = 180 Ω
- R6 = 4k3
- R8 = 470 Ω
- R9 = 68 Ω/5 W**
- P1 = 2k5 preset
- P2 = 2k2 linear

 *75 Ω = 150 Ω || 150 Ω
 **see text

Capacitors:
- C1, C4 = 100 n
- C2, C3 = 10 μ/16 V
- C5 . . . C7 = 100 μ/16 V
- C8 = 470 μ/35 V
- C9 = 330 n

Semiconductors:
- D1 = 1N4148
- D2 . . . D5 = 1N4001
- T1 = BC547B
- T2 = BC557B
- T3 = BD137/139
- IC1 = 7812

Miscellaneous:
- S1 = double pole mains switch

| F1 = 100 mA slow blow fuse |
| Tr1 = 15 V, 0.8 A mains transformer |
| HeatSink for IC1 |
| Case, approximate dimensions 120 x 65 x 65 mm |
Personal FM
(September 1983, page 9-46)
The 0.22 μH Toko coils for L1 and L2 should be of the small axial-leaded type. Alternatively, they can quite easily be wound. The correct inductance can be obtained by winding 13 turns of SWG 27 enamelled copper wire on a 3.5 mm ‘former’ (we used the plastic refill for a well-known ballpoint pen). L3 is listed as stock number 35-01144 in the Ambit catalogue under the heading 'coil style MC 120'.

Electronic voltage regulator
(October 1983, page 10-57)
The text for this article states that this circuit will work with a d.c. dynamo. The theory behind the regulator does apply for d.c. dynamos, but this particular circuit will only work with an alternator.

7-day timer/controller
(April 1983, page 4-42)
In a few cases difficulties are encountered with the storing of the switching data. This is caused by an incorrect trigger level at IC5. The remedy consists of reducing the value of C8 down to 1 nF (but not lower), if necessary.
The following pages contain the mirror images of the track layout of the printed circuit boards (excluding double-plated ones as these are very tricky to make at home) relating to projects featured in this issue to enable you to etch your own boards.

To do this, you require:
- An aerosol of 'ISOdraft' transparent (available from your local drawing office suppliers; distributors for the UK: Cannon & Wrin), an ultraviolet lamp, etching sodium, ferric chloride, positive photo-sensitive board material (which can be either bought or home made by applying a film of photo-copying lacquer to normal board material).
- Wet the photo-sensitive (track) side of the board thoroughly with the transparent spray.

PC board pages

- Lay the layout cut from the relevant page of this magazine with its printed side onto the wet board. Remove any air bubbles by carefully 'ironing' the cut-out with some tissue paper.
- The whole can now be exposed to ultra-violet light. Use a glass plate for holding the layout in place only for long exposure times, as normally the spray ensures that the paper sticks to the board. Bear in mind that normal plate glass (but not crystal glass or perspex) absorbs some of the ultra-violet light so that the exposure time has to be increased slightly.
- The exposure time is dependent upon the ultra-violet lamp used, the distance of the lamp from the board, and the photo-sensitive board. If you use a 300 watt UV lamp at a distance of about 40 cm from the board and a sheet of perspex, an exposure time of 4 ... 8 minutes should normally be sufficient.
- After exposure, remove the layout sheet (which can be used again), and rinse the board thoroughly under running water.
- After the photo-sensitive film has been developed in sodium lye (about 9 grammes of etching sodium to one litre of water), the board can be etched in ferric chloride (500 grammes of FeCl3 to one litre of water). Then rinse the board (and your hands!) thoroughly under running water.
- Remove the photo-sensitive film from the copper tracks with wire wool and drill the holes.
Audio and sound generation

<table>
<thead>
<tr>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accessories for the Crescendo power amplifier</td>
<td>1-28</td>
</tr>
<tr>
<td>Audio traffic light</td>
<td>3-56</td>
</tr>
<tr>
<td>Common base mixer</td>
<td>7-84</td>
</tr>
<tr>
<td>Crescendo revisited</td>
<td>11-62</td>
</tr>
<tr>
<td>Cricket simulator</td>
<td>11-63</td>
</tr>
<tr>
<td>Disco phaser</td>
<td>12-50</td>
</tr>
<tr>
<td>Electronic switch for audio signals</td>
<td>7-78</td>
</tr>
<tr>
<td>Electronic tuning fork</td>
<td>7-34</td>
</tr>
<tr>
<td>Electronic two-tone metronome</td>
<td>11-48</td>
</tr>
<tr>
<td>40 watt main amplifier</td>
<td>7-82</td>
</tr>
<tr>
<td>Interlude</td>
<td>4-36</td>
</tr>
<tr>
<td>Logarithmic amplifier</td>
<td>7-37</td>
</tr>
<tr>
<td>Machine gun sound generator</td>
<td>7-44</td>
</tr>
<tr>
<td>Maestro part 1</td>
<td>5-38</td>
</tr>
<tr>
<td>Maestro part 2</td>
<td>6-46</td>
</tr>
<tr>
<td>MC/MM phono preamp</td>
<td>4-26</td>
</tr>
<tr>
<td>Microphone amplifier with preset tone control</td>
<td>7-83</td>
</tr>
<tr>
<td>Music quantizer</td>
<td>10-30</td>
</tr>
<tr>
<td>Music tone generator</td>
<td>11-41</td>
</tr>
<tr>
<td>Mini compressor</td>
<td>7-89</td>
</tr>
<tr>
<td>Personal FM</td>
<td>9-46</td>
</tr>
<tr>
<td>Portable FM</td>
<td>12-39</td>
</tr>
<tr>
<td>Prelude part 1</td>
<td>2-18</td>
</tr>
<tr>
<td>Prelude part 2</td>
<td>3-36</td>
</tr>
<tr>
<td>Prelude part 3</td>
<td>4-52</td>
</tr>
<tr>
<td>Prelude buffer</td>
<td>7-60</td>
</tr>
<tr>
<td>Prelude class A headphone amplifier</td>
<td>2-34</td>
</tr>
<tr>
<td>Prelude c.p.s.</td>
<td>5-33</td>
</tr>
<tr>
<td>Preset the hard(ware) way</td>
<td>7-88</td>
</tr>
<tr>
<td>Pseudo stereo</td>
<td>11-52</td>
</tr>
<tr>
<td>RC equalizer</td>
<td>4-40</td>
</tr>
<tr>
<td>Sea murmur simulator</td>
<td>7-77</td>
</tr>
<tr>
<td>Simple PA system</td>
<td>7-91</td>
</tr>
<tr>
<td>Spectrum display</td>
<td>6-38</td>
</tr>
<tr>
<td>ZN 415 - a complete AM radio tuner (Applicator)</td>
<td>11-63</td>
</tr>
</tbody>
</table>

Car

<table>
<thead>
<tr>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Autotest</td>
<td>9-22</td>
</tr>
<tr>
<td>Car lights warning device (J. Glauer)</td>
<td>7-60</td>
</tr>
<tr>
<td>Car PDM amplifier</td>
<td>7-36</td>
</tr>
<tr>
<td>(missing link)</td>
<td>9-59</td>
</tr>
<tr>
<td>Electronic voltage regulator</td>
<td>10-57</td>
</tr>
<tr>
<td>(missing link)</td>
<td>12-39</td>
</tr>
<tr>
<td>Interior temperature control for cars</td>
<td>7-66</td>
</tr>
<tr>
<td>Main beam dimmer</td>
<td>2-32</td>
</tr>
</tbody>
</table>

Domestic

<table>
<thead>
<tr>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alarm extension</td>
<td>9-51</td>
</tr>
<tr>
<td>Anemometer</td>
<td>10-40</td>
</tr>
<tr>
<td>Anti-burglar lights</td>
<td>7-55</td>
</tr>
<tr>
<td>Code lock with door opener</td>
<td>7-60</td>
</tr>
<tr>
<td>Constant light source</td>
<td>7-29</td>
</tr>
<tr>
<td>Doorbell memory</td>
<td>7-33</td>
</tr>
<tr>
<td>Doorbell or telephone - operated flash-light</td>
<td>11-23</td>
</tr>
<tr>
<td>Drill speed controller</td>
<td>7-85</td>
</tr>
<tr>
<td>Electronics and plant physiology</td>
<td>7-52</td>
</tr>
<tr>
<td>Energy meter</td>
<td>6-24</td>
</tr>
<tr>
<td>Frost warning device</td>
<td>12-47</td>
</tr>
<tr>
<td>Fuse protector (H. Dominic)</td>
<td>2-39</td>
</tr>
</tbody>
</table>

LED ornaments

<table>
<thead>
<tr>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low-cost CMOS lock</td>
<td>7-75</td>
</tr>
<tr>
<td>(missing link)</td>
<td>10-47</td>
</tr>
<tr>
<td>Low power digital thermometer (E. Schmidt)</td>
<td>4-22</td>
</tr>
<tr>
<td>Portable egg timer</td>
<td>7-62</td>
</tr>
<tr>
<td>7-day timer/controller</td>
<td>4-42</td>
</tr>
<tr>
<td>Stay awake alarm</td>
<td>7-54</td>
</tr>
<tr>
<td>Talking clock extension (E. A. J. Bogers)</td>
<td>4-60</td>
</tr>
<tr>
<td>Thermometer (A. van Olderen)</td>
<td>7-30</td>
</tr>
<tr>
<td>Wattmeter</td>
<td>5-22</td>
</tr>
</tbody>
</table>

Fun and Games

<table>
<thead>
<tr>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dexterity game</td>
<td>7-81</td>
</tr>
<tr>
<td>Double dice</td>
<td>2-51</td>
</tr>
<tr>
<td>Electronic pocket pinball (H. J. Walter)</td>
<td>7-70</td>
</tr>
<tr>
<td>Horse race simulator (R. Darnton)</td>
<td>7-58</td>
</tr>
<tr>
<td>Reaction tester (L. van Boven)</td>
<td>3-50</td>
</tr>
<tr>
<td>Trick battery (L. van Boven)</td>
<td>11-60</td>
</tr>
</tbody>
</table>

'HF'

<table>
<thead>
<tr>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>MF/HF USB marine receiver</td>
<td>12-24</td>
</tr>
<tr>
<td>Morse converter (R. Unterricker)</td>
<td>5-52</td>
</tr>
<tr>
<td>Morse decoding with the Z80A (P. von Berg)</td>
<td>5-60</td>
</tr>
<tr>
<td>Personal FM</td>
<td>9-46</td>
</tr>
<tr>
<td>Pseudo stereo</td>
<td>11-52</td>
</tr>
<tr>
<td>RTTY decoder</td>
<td>6-30</td>
</tr>
</tbody>
</table>

Hobby

<table>
<thead>
<tr>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Action flash</td>
<td>7-68</td>
</tr>
<tr>
<td>Darkroom computer tips (H. Fietta)</td>
<td>1-33</td>
</tr>
<tr>
<td>Darkroom light</td>
<td>7-61</td>
</tr>
<tr>
<td>Flashing running light</td>
<td>7-42</td>
</tr>
<tr>
<td>Locomotive headlamp reverser</td>
<td>12-44</td>
</tr>
<tr>
<td>Power controller for model railways</td>
<td>11-26</td>
</tr>
<tr>
<td>Programmable darkroom timer</td>
<td>4-56</td>
</tr>
<tr>
<td>Servo tester (G. Luber)</td>
<td>3-23</td>
</tr>
<tr>
<td>Solid state darkroom lighting</td>
<td>10-36</td>
</tr>
<tr>
<td>Switching channel for radio control</td>
<td>8-28</td>
</tr>
</tbody>
</table>

Informative articles

A (re)new(ed) eight bitter: the 85C02 (Applicator) | 10-70 |
Basicode 2 | 10-27 |
Better way of depositing semiconductor compounds (Selektor) | 10-26 |
Chips for digital audio (I) | 1-36 |
Chips for digital audio (II) | 2-54 |
Coming soon | 1-19 |
Cutting costs with sparks (Selektor) | 1-17 |
Decoupling in digital circuits | 11-30 |
Discovering the infra-red universe (Selektor) | 10-24 |
Electrical language of fish (Selektor) | 5-19 |
Fluorescent displays | 3-18 |
Fourier synthesis (E. Muller) (Ejector) | 1-50 |
High speed CMOS | 9-32 |
Membrane switches | 4-34 |
Morse and radio teletype (RTTY) | 6-52 |
NOVRAM — data storage without batteries | 12-58 |
0, 1! | 3-62 |
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>raindrops and radar (Selektor)</td>
<td>6-21</td>
</tr>
<tr>
<td>readership survey results</td>
<td>10-21</td>
</tr>
<tr>
<td>R5620 . . . a programmable universal filter with switched capacitors</td>
<td>2-58</td>
</tr>
<tr>
<td>stereo TV sound (Selektor)</td>
<td>5-21</td>
</tr>
<tr>
<td>taking the heat out of electronics (Selektor)</td>
<td>12-21</td>
</tr>
<tr>
<td>talking to computers (Selektor)</td>
<td>2-16</td>
</tr>
<tr>
<td>the potential of the bucket brigade</td>
<td>4-20</td>
</tr>
<tr>
<td>tomorrow's music</td>
<td>1-53</td>
</tr>
<tr>
<td>universal logic: more potential in the chip (Selektor)</td>
<td>12-20</td>
</tr>
<tr>
<td>video graphics</td>
<td>9-18</td>
</tr>
<tr>
<td>what is power?</td>
<td>5-47</td>
</tr>
<tr>
<td>when electromagnetic waves came to light (Selektor)</td>
<td>11-21</td>
</tr>
<tr>
<td>Measuring/test equipment</td>
<td></td>
</tr>
<tr>
<td>capacitance meter</td>
<td>7-34</td>
</tr>
<tr>
<td>energy meter</td>
<td>6-24</td>
</tr>
<tr>
<td>5 V logic tester (C. Bajoux)</td>
<td>7-92</td>
</tr>
<tr>
<td>heatsink thermometer</td>
<td>7-72</td>
</tr>
<tr>
<td>HFE tester</td>
<td>7-49</td>
</tr>
<tr>
<td>high and low tester (R. Storn)</td>
<td>7-97</td>
</tr>
<tr>
<td>LCD luximeter</td>
<td>3-24</td>
</tr>
<tr>
<td>low power digital thermometer</td>
<td>4-22</td>
</tr>
<tr>
<td>mains wiring tester (A. Scagg)</td>
<td>7-56</td>
</tr>
<tr>
<td>millihmimeter</td>
<td>1-24</td>
</tr>
<tr>
<td>multimeter (E. Osterwick)</td>
<td>5-36</td>
</tr>
<tr>
<td>optical voltage indicator</td>
<td>7-71</td>
</tr>
<tr>
<td>resistance comparator</td>
<td>7-28</td>
</tr>
<tr>
<td>simple MOSFET test</td>
<td>9-58</td>
</tr>
<tr>
<td>temperature indicator</td>
<td>7-89</td>
</tr>
<tr>
<td>thermal indicator for heat sinks</td>
<td>7-96</td>
</tr>
<tr>
<td>thermistor (A. van Olderen)</td>
<td>7-30</td>
</tr>
<tr>
<td>transistor selector</td>
<td>10-62</td>
</tr>
<tr>
<td>voltage monitor</td>
<td>7-89</td>
</tr>
<tr>
<td>wattmeter</td>
<td>5-22</td>
</tr>
<tr>
<td>Microprocessor</td>
<td></td>
</tr>
<tr>
<td>acoustic 'flag' for the RS232 interface</td>
<td>7-91</td>
</tr>
<tr>
<td>acoustic telephone modem (J.J.M. Habets and C.A. Truijens)</td>
<td>2-42</td>
</tr>
<tr>
<td>(missing link)</td>
<td>10-46</td>
</tr>
<tr>
<td>ASCII keyboard</td>
<td>5-26</td>
</tr>
<tr>
<td>banking program</td>
<td>12-56</td>
</tr>
<tr>
<td>Basicode-2 interface for the Junior Computer</td>
<td>10-51</td>
</tr>
<tr>
<td>bus extension</td>
<td>12-62</td>
</tr>
<tr>
<td>busy indicator for the Junior Computer (W. Schaa)</td>
<td>7-77</td>
</tr>
<tr>
<td>Centronics interface</td>
<td>7-45</td>
</tr>
<tr>
<td>CPU card</td>
<td>11-32</td>
</tr>
<tr>
<td>EPROMmmer using the Junior Computer</td>
<td>10-68</td>
</tr>
<tr>
<td>fault finder for ASCII keyboard</td>
<td>7-94</td>
</tr>
<tr>
<td>fluorescent display (Applicator)</td>
<td>6-58</td>
</tr>
<tr>
<td>FSKlearner</td>
<td>10-64</td>
</tr>
<tr>
<td>joystick interface</td>
<td>7-46</td>
</tr>
<tr>
<td>Junior program tester (P. Wild)</td>
<td>4-51</td>
</tr>
<tr>
<td>Junior synthesizer</td>
<td>9-56</td>
</tr>
<tr>
<td>microprocessor aid</td>
<td>7-80</td>
</tr>
<tr>
<td>µprocessor fault finder</td>
<td>7-95</td>
</tr>
<tr>
<td>microprocessor 'stethoscope'</td>
<td>7-31</td>
</tr>
<tr>
<td>morse converter (R. Unterrick)</td>
<td>5-52</td>
</tr>
<tr>
<td>(missing link)</td>
<td>9-59</td>
</tr>
<tr>
<td>morse decoding with the Z80A (P. von Berg)</td>
<td>5-50</td>
</tr>
<tr>
<td>(missing link)</td>
<td>10-46</td>
</tr>
<tr>
<td>parallel-serial keyboard converter</td>
<td>5-50</td>
</tr>
<tr>
<td>(missing link)</td>
<td>10-46</td>
</tr>
<tr>
<td>RTTY decoder</td>
<td>6-30</td>
</tr>
<tr>
<td>simple baud rate generator</td>
<td>7-41</td>
</tr>
<tr>
<td>6809 D RAM controller (H. Fischer)</td>
<td>7-90</td>
</tr>
<tr>
<td>64 K on the 16 K Dynamic RAM card</td>
<td>9-29</td>
</tr>
<tr>
<td>(missing link)</td>
<td>11-41</td>
</tr>
<tr>
<td>64-way bus board</td>
<td>12-22</td>
</tr>
<tr>
<td>software RAM tester</td>
<td>7-49</td>
</tr>
<tr>
<td>traffic-light control system (D. Herzberg)</td>
<td>1-46</td>
</tr>
<tr>
<td>2650 single step</td>
<td>7-34</td>
</tr>
<tr>
<td>universal memory card</td>
<td>3-28</td>
</tr>
<tr>
<td>universal terminal</td>
<td>11-56</td>
</tr>
<tr>
<td>upper and lower case on the Elekterminal (D. Paulsen)</td>
<td>1-56</td>
</tr>
<tr>
<td>(missing link)</td>
<td>11-41</td>
</tr>
<tr>
<td>VAM — video/audio modulator</td>
<td>2-27</td>
</tr>
<tr>
<td>VDU card</td>
<td>9-38</td>
</tr>
<tr>
<td>vector control for the Junior Computer (N. Humphreys)</td>
<td>7-79</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td></td>
</tr>
<tr>
<td>amplified triac drive</td>
<td>7-68</td>
</tr>
<tr>
<td>automatic display dimmer</td>
<td>3-46</td>
</tr>
<tr>
<td>auto trigger</td>
<td>7-46</td>
</tr>
<tr>
<td>battery economizer</td>
<td>7-51</td>
</tr>
<tr>
<td>capacitive switch</td>
<td>7-98</td>
</tr>
<tr>
<td>decimal-to-binary converter</td>
<td>11-40</td>
</tr>
<tr>
<td>distance meter for thunderstorms</td>
<td>7-84</td>
</tr>
<tr>
<td>economic LED</td>
<td>7-47</td>
</tr>
<tr>
<td>electronic aerial switch (C. Abegg)</td>
<td>6-36</td>
</tr>
<tr>
<td>electronic switch for audio signals</td>
<td>7-78</td>
</tr>
<tr>
<td>electronic tuning fork</td>
<td>7-34</td>
</tr>
<tr>
<td>four quadrant multiplier</td>
<td>7-79</td>
</tr>
<tr>
<td>frequency comparator</td>
<td>7-62</td>
</tr>
<tr>
<td>glitch suppressor</td>
<td>7-76</td>
</tr>
<tr>
<td>horse paces simulator (B. Darnton)</td>
<td>7-58</td>
</tr>
<tr>
<td>inexpensive 45 MHZ crystal filter</td>
<td>7-74</td>
</tr>
<tr>
<td>key bleep</td>
<td>8-00</td>
</tr>
<tr>
<td>LED amplifier</td>
<td>7-47</td>
</tr>
<tr>
<td>LED current source</td>
<td>7-39</td>
</tr>
<tr>
<td>line detector</td>
<td>7-69</td>
</tr>
<tr>
<td>movement detector</td>
<td>11-45</td>
</tr>
<tr>
<td>noise and vibration detector</td>
<td>7-45</td>
</tr>
<tr>
<td>on/off with a single push button</td>
<td>7-74</td>
</tr>
<tr>
<td>precision voltage divider</td>
<td>9-50</td>
</tr>
<tr>
<td>reproducible delay</td>
<td>7-38</td>
</tr>
<tr>
<td>signal purifier for SSB telegraphy receiver (P. von Berg)</td>
<td>7-57</td>
</tr>
<tr>
<td>simple D/A converter</td>
<td>7-86</td>
</tr>
<tr>
<td>solar tracking system</td>
<td>7-40</td>
</tr>
<tr>
<td>S.P.T.S.</td>
<td>7-85</td>
</tr>
<tr>
<td>stable zener</td>
<td>7-38</td>
</tr>
<tr>
<td>symmetrical voltages from a doorknob transformer (R. Storn)</td>
<td>7-39</td>
</tr>
<tr>
<td>ultrasonic/infra-red barrier</td>
<td>11-58</td>
</tr>
<tr>
<td>universal AFC</td>
<td>7-99</td>
</tr>
<tr>
<td>useful tip . . . 2N3055 Super Darlington pair</td>
<td>10-67</td>
</tr>
</tbody>
</table>
variable zener .. 7-88
very narrow crystal filter 7-56
VFO with variable inductor (A.B. Bradshaw) .. 7-67
window comparator (R. de Boer) 7-76
zero crossing detector (O.M. Kellogg) 7-83

Power supplies/generators
battery eliminator 10-60
current source for photodiodes 7-94
DC-DC converter (A. Bovee) 7-61
d.c. voltage doubler using a 4049 (G. Ramm) . 7-53
emergency mains cut-out 7-41
high-voltage regulator 10-38
LED current source 7-39
negative printhead supply 7-83
offset-less rectifier 7-64
180 watt DC/AC converter 8-00
1 MHz time-base without crystal 7-44
power back-up for CMOS ICs during mains failures . 7-32
programmable power supply 10-49
pulse/pulse train generator 7-64
RC generator (W. Meisinger) 7-65
78L voltage regulators ... and 79L 5-59
simple baud rate generator 7-41
simple power supply regulator 7-98
simple regulated power supply 7-48
simple sawtooth generator (R. Oppelt) 7-71
simple stabilizer 7-78
stepped voltage generator 7-32
synchronous, constant amplitude, sawtooth generator ... 7-87
symmetrical harmonic oscillator 7-31
symmetrical power supply 12-32
symmetrical voltages from a doorbell transformer (R. Storn) 7-39
3 A computer power supply 1-43
video effect generator (L. Heylen) 6-50
video pattern generator 7-58
voltage booster regulator 7-54

Video
VAM — video/audio modulator 2-27
video amplifier 12-36
video effect generator (L. Heylen) 6-50
video pattern generator 7-58

Missing link
acoustic telephone modem
(February 1983, page 2-42) 10-46
car PDM amplifier 9-59
Crescendo (December 1982, page 12-32) 11-41
drum interface (November 1982, page 11-20) 11-41
electronic voltage regulator
(October 1983, page 10-57) 12-39
floppy disk interface for the Junior Computer
(December 1982, page 12-48) 9-59, 11-41
in-car ioniser (December 1982, page 12-45) 11-41
infocard 55 .. 9-59
infocard 70 .. 9-59

low cost CMOS lock
(Summer circuits 1983, page 7-75) 10-47
morse decoding with the Z80A
(May 1983, page 5-60) 10-46
morse converter (May 1983, page 5-52) 9-59
music quantizer (October 1983, page 10-33) ... 11-41
personal FM (September 1983, page 9-46) 12-39
parallel-serial keyboard converter
(May 1983, page 5-50) 10-46
7-day timer/controller (April 1983, page 4-42) ... 12-39
single channel infra-red remote control
(January 1982, page 1-52) 11-41
64 K on the 16 K dynamic RAM card
(September 1983, page 9-31) 11-41
upper and lower case on the Elekterminal
(January 1983, page 1-56) 11-41

Merry Christmas
and
Happy New Year

12-43
The generator described in our November 1982 issue superimposes a high-frequency alternating voltage \(u_L\) onto the direct-voltage output \(U_p\) of the power controller. Capacitors are used both at the output of the generator and at the input to the coach lamps to prevent the d.c. from the controller interfering with the lighting system.

The composite voltage \(u_C\) is applied to the input \((A, B)\) of the reversing circuit shown in figure 1. This circuit ensures appropriate control of the reed relay in accordance with the direction of travel of the locomotive (which can, of course, be detected from the polarity of \(U_p\)). As space in model railway locomotives is restricted, all components used are, of course, miniature or sub-miniature types.

Depending upon the position of the relay contact, either \(La\) or \(La_1\) is connected to the input voltage \(u_C\) via capacitor \(C_L\). The value of \(C_L\) is calculated from \(C_L = 1/(2 \pi f X_C)\) Farad, where \(f\) is the frequency of the generator (19 kHz) and \(X_C\) is the reactance of \(C_L\). This reactance should preferably be not more than \(1/5\) of the value of the lamp resistance. If, thus, for instance, a 12 V, 50 mA lamp is used (resistance = 240 \(\Omega\)), \(X_C\) should not exceed 48 \(\Omega\)

\[C_L = 1/(2 \times 3.142 \times 19 \times 10^4 \times 48)\]

\[= 175 \times 10^{-6} = 175 \text{ nF}\]

The nearest (higher) standard value of 220 nF should thus be used.

The operating voltage for the circuit is derived from \(u_C\). The h.f. component is rectified in diodes D1 and D2 and smoothed by capacitors C1 and C2.

Opamp IC1 is used as a comparator: its non-inverting input lies at the centre of voltage divider R2-R3 which is connected across \(U_p\). If 'B' is positive with respect to 'A', that is, when the locomotive is reversing, capacitor C2 charges and the inverting input, pin 2, of the opamp is more negative than the non-inverting input, pin 3; the output of the comparator is then positive. Transistor T1 conducts, and the consequent voltage across zener diode D4 and voltage regulator IC2 actuates the relay. The relay operates and connects \(La\) to \(u_L\).

When the locomotive goes forward again (and 'A' is positive with respect to 'B'), the voltage across C1 becomes greater than that across C2; the output of the comparator goes negative, T1 stops conducting, the relay is no longer actuated, and \(La\) is again connected across \(u_L\).

Zener diode D3 is included as a high-voltage protection, but can be omitted if \(u_L\) is smaller than 35 Vpp.

The zener voltage, \(U_Z\), of diode D4 is calculated from \(U_Z = u_{LPP} - 20\) V.

Miniature reed relays are available in DIL package and these are ideal for our purpose. If a relay with integral diode is used, D5 can, of course, be omitted. However, take note that the integral diode may be of either polarity. This should be carefully checked before wiring the relay.

In our November 1982 issue we published the design of a high-frequency generator for the lighting of model railway coaches independent of the locomotive power supply. It occurred to us that this generator could also be used for changing the headlamps to the direction of travel on double-ended locomotives.
Note: the PCBs for the 64-way bus board (EPS 83102) and the marine receiver (EPS 83024) are not included since these are double-sided boards.
PC board pages
In spite of the cold weather we have had since the summer disappeared, winter has just begun and the worst weather almost invariably comes in the first few months of the year. Then the weather forecast is nearly always the same: ‘cold . . . possibility of sleet or snow . . . watch out for ice . . .’, and so on. However, meteorologists cannot give a detailed accurate weather forecast for the whole of the country, particularly considering the effect that local geography has on the weather. All our efforts to design a ‘weather controller’ have so far been in vain, but we did come up with this frost warning device which should be a bit less hazardous than the usual ‘suck it and see’ method.

frost warning device

While Britain is normally spared the worst extremes of weather, there are times when it does not seem like that. This is particularly so in winter when the cold seems to be able to creep through any number of layers of woolen clothing. It’s unpleasant, but we just have to grumble and bear it. It would be very convenient, however, if you knew before stepping outside whether it is merely ‘cold’ or ‘very very cold’. If you have a thermometer the problem is solved, except, of course, that it has to be left outside – which sort of defeats the purpose. What is really needed is a temperature sensor mounted outside giving an indication inside. For motorists the problem is somewhat different as weather conditions can vary quite considerably in the course of a journey. Gardeners are often interested in one particular weather condition – frost. In this case, of course, it would be invaluable to know if the temperature has dropped below freezing point overnight, for example. These are the principle applications we considered for this frost warning device but, because the temperature to be detected can be adjusted, the circuit here has many more possible applications than a simple freezing-point detector.

Operation
The circuit diagram for this frost warning is shown in figure 1. The temperature is sensed by the LM335Z which gives a specific value (A) in mV proportional to the measured temperature. This provides one of the inputs to comparator A1. The second input (B) is a reference voltage which can be adjusted with P1. When the sensor voltage at point A becomes lower than the reference voltage at point B the output of A1 goes high. This causes the oscillator around A2 to start and LED D1 flashes about once per second. At the same time the one-shot at A3 will go high for almost two seconds and during this time a second oscillator based on A4 drives the piezo buzzer at a frequency of about 1 kHz.

As far as the user is concerned, this is what happens: when the temperature first drops
Figure 1. This is the circuit diagram of the frost warning device. When the temperature sensed by the LM 335Z falls below a preset level, this is indicated by the two LEDs and the buzzer.

below the preset level the buzzer sounds briefly. At the same time LED D1 begins to flash and flashes until the temperature rises above the preset level again.

The circuit around T2 and T3 acts as a memory. Whenever the temperature drops below the preset level D2 lights and continues to do so even if the temperature has subsequently risen above the preset level.

Push button S1 must be pressed to extinguish this LED and thus reset the memory.

Construction and adjustment
Construction should present no problems, especially if the printed circuit board layout as shown in figure 2 is used. The LM 335Z should, however, be protected from the wet, and this is quite easily done. After soldering wires onto the appropriate two leads of this sensor, the assembly can be slipped into a length of heat shrinkable tubing about ½” from the end. Heating this empty ½” will then cause it to contract and provide a waterproof seal over the device. Alternatively, the sensor could simply be sealed with two-component epoxy glue.
A mixture of crushed ice and water is needed to adjust the circuit. Stirring the mixture with the sensor for a minute or two will cause the sensor to be at freezing point. Potentiometer P1 is then adjusted until LED D1 just lights and the buzzer sounds briefly. Some people may consider this as a case of shutting the stable door after the horse has bolted as freezing can occur at any temperature below about +3°C. However, if a thermometer is used as a reference, this temperature could just as easily be used as the preset value.

The maximum current consumption of the circuit is about 45 mA, and with its supply voltage of 12...15 V it can be powered by a car battery. If it is to be used in the home a suitable power supply will have to be added, of course.

Even though this circuit may seem eminently suitable for use in a car as an ice warning device, there are a few problems to be considered first. The sensor would have to be mounted somewhere out of the air stream but where it is not affected by engine (or cabin) heat. Even if your car has a suitable mounting location, this will still leave the sensor several inches above the road (which is where the sensor really should be). Also temperature is not the only factor affecting the formation of ice and just measuring one parameter cannot be considered as a reliable indication. It is rather doubtful, therefore, whether any so-called frost warming device is of any use in a car. However, if you are going on a long journey the weather (and road) conditions may change a lot, so if your frost warmer starts to flash before you are half way to your destination then at least you know you should be on your guard!
Phasing is an effect well known to musicians. In electronic parlance it is, in fact, a comb filter so called because the response is the attenuation and amplification of a number of equally spaced frequencies in the audio spectrum. It lends itself particularly well to sounds rich in harmonics and is therefore ideal for use with recordings, musicassettes, or records containing much percussion, E-string guitar music, or choral works; it is not really suitable for solo instruments.

The filter response which provides the phasing effect is illustrated in figure 1. From this it is easy to see why it is called a comb filter. There are a number of ways in which this can be achieved in practical terms. Studio quality systems can be very complex and therefore very expensive, but simpler methods do exist and, while not giving hi-fi performance, do give a reasonable sound quality. The easiest method, which is incidentally the method used by virtually all low-cost commercial phasers, is to use a string of wide-band filters. These form a delay line with a delay which can normally be varied between 1 and 15 ms. To be sure, quite a number of electronic switches are required, but the use of TL084 JFET opamps and 4066 quad bilateral switches keeps the number of components to a minimum. Moreover, the circuit needs no...
calibration, it accepts all signals of which the level lies between the two supply voltages, it produces neither noise nor distortion, and it requires no low-pass filters.

The circuit shown in figure 2 is one element of the 16-stage delay line used in the phaser. With the type of filter used, it is, perhaps, better to speak of time shift rather than phase shift. It is readily seen from figure 2 how this shift is achieved: the larger capacitor C, the greater the time shift. Unfortunately, there's a limit to this, because the frequency response of the filter tends to narrow with increasing C.

The only way to reconcile these two incompatible factors is a compromise between the number of switches (as few as possible!) and the sound quality (good transfer characteristics). We found that values of $C = 4n7$ and $R1 = 30k$ gave the best results.

The delay line is housed on a separate printed-circuit board from the oscillator and control stages. This arrangement makes it possible for a number of delay lines to be connected in series or for the delay line to be used for purpose other than described here.

Coupling capacitors $C17 \ldots 19$ are necessary at the audio input and delay outputs 1 and 2 to prevent d.c. entering, or off-set voltages produced by the many opamps leaving the delay line. It is, of course, vital that the delay line is adjustable and the various means by which this can be achieved include OTAs (operational transconductance amplifiers), FETs (field-effect transistors), and so on. It is, however, much cheaper to switch resistors by means of CMOS switches which open and close (under the control of the clock generator, N1) at a high frequency. When the switch is open, the flow of current is interrupted and the associated capacitor does not charge. When the switch is closed, current flows and the capacitor charges. The switching frequency is of little concern in this application: what is important is how long the switch is open or closed as this determines the length of pulses and pauses. Ideally, the duty cycle (that is, the pulse/pause ratio) should be continuously variable between 0 and 100 per cent, and all switches should be controlled by the same clock. The clock frequency should preferably be more than twice the highest audio frequency, say, 40...50 kHz. Be careful when using tape recorders, however, as the erase oscillator may work at the about the same frequency.

Oscillator
As stated, we need a pulse-width (clock) generator which produces square waves at a frequency of about 40...50 kHz: this is Schmitt trigger N1 and associated components (see figure 3b). The square-wave pulses are converted by low-pass filter R12-C6 into a triangular wave form which is then fed to opamp IC5. This IC functions as a comparator and its trigger level is determined by the voltage at its non-inverting input (pin 3). The pulse width at the output (pin 6) of IC5 is also directly dependent upon the voltage at pin 3. Schmitt trigger N2 merely restores the output pulses to square waves.

As we said before, it must be possible to vary the pulse-width at the output of N2, and this can be done in two ways: manually, with P3, and by means of an LFO (low-frequency oscillator) consisting of integrator A1 and trigger A2.

As the phasing effect sounds better if the pulse-width is modulated by a sine wave rather than a triangular wave, buffer A3 and limiting diodes D5 and D6 are connected in series with the (triangular) output of the LFO. The output level of the LFO is about $0.7V$ which can be set to any value but within this range by means of P2. The output of the LFO stages is taken across R18 to A4 (pin 13) where it is mixed with the voltage from P3. The relationship between these two inputs is determined by the trigger level of the mixer which is set by P3.

It may, unfortunately, happen that the presetting range of P2 and P3 includes an area where the output voltage of A4 is too low or too high. This results in IC5 clipping the triangular wave form at pin 2 (see figure 4), which causes a loud click in the loudspeaker. This trouble is encountered particularly when the pulse width is set too narrow (duty cycle below about 2 or 3 per cent).

A control stage is therefore needed to limit the output of A4. A Schmitt trigger, N3, is triggered by the output signal of IC5 (which has a variable duty cycle) and functions as a secondary clock generator: its output is inverted by N4. The outputs of N3 and N4 are integrated and converted into d.c. voltages which are compared with a reference voltage by IC1 and IC2 respectively. The reference voltages are preset by P5 and P6 respectively. The d.c. levels (which are thus proportional to the duty cycle) are used to control A4 so that the output of this stage cannot exceed a duty cycle range of 10...90 per cent (see figure 4). An incidental advantage of this arrangement is that the control stage is independent of the clock generator and the low-frequency oscillator. If necessary, it can therefore be disconnected from A4 without any ill effect.

Additional points
The delay time of the sixteen-element delay line is 6 ms. The delay time can, of course, be lengthened by connecting a number of delay lines in series. However, we found that when more than two lines are used, the sound becomes increasingly distorted and the overall effect is one of impairment rather than improvement.
Figure 3a. The circuit diagram of the sixteen active filters and the (electronically) switched input resistors which form the delay line.
Figure 3b. The circuit diagram of the oscillator and control stages.

Figure 4. The most likely fault is the breaking through of the clock signal when the pulse/pause ratio becomes too large or too small. The control stage limits the ratio.
The mixer output should not be used when connecting delay lines in series: use output delay 1 (eight filters) or delay 2 (sixteen filters) only. The preset P1 can be omitted from all but the last in a series of delay lines, but it must then be replaced by a 100 k resistor to earth as shown in dotted lines in figure 3a. The outputs of the delay lines are wired to the input resistors, R51 . . . R54, of mixer IC9. Four inputs are provided to enable two delay lines to be wired in series.
This then forms a delay line of 8, 16, 24, and 32 stages. The least delayed sound should be connected to the highest resistance. The resistors can be of the following values: 1 M (R51), 470 k (R52), 220 k (R53), 100 k (R54). These values are, of course, entirely arbitrary and you may find other values more pleasing to you. Furthermore, different phasing effects can be found by switching the outputs of the delay lines to the mixer.
One of the most interesting characteristics of combining a BASIC compiler with a Disk Operating System is the possibility of creating data files accessed by one or more programs written in BASIC. For Junior Computer owners the procedure is described briefly in the Ohio notes, but when this banking program was sent in by a reader we saw it as an excellent opportunity to delve a bit deeper into the operation of indirect files.

The routines used
At the start of each of the specific routines the program will seek two fundamental data values on the diskette: the remaining balance (variable S) and the number of the last operation specified (variable C). This is done starting at line 500. The subroutine at line 525 reverses the procedure at the end of each routine.

Input and output routines
The program first asks the number of credits or debits to be processed. Then it requests the amount of the first operation, its nature (or category) and its date. The date is always indicated by six figures, first the day, then the month and finally the year, with two numbers for each. The category is registered as a string of characters, so it could consist of names (‘taxes’ for example), numbers (such as cheques) or abbreviations.

Request routine
It is possible to get a complete list of all credits or debits, or a listing per month or even of a certain operation (identified by amount, category and date). If one or two of the required parameters are not known (amount/category/date) write ‘X’.

Balance routine
This routine displays the balance available.

Adding routines
As the name implies, these options are used for compiling totals for the different types of operations.

When the program is used for the first time, option ‘1’ must be used to register at least one credit, otherwise the program will refuse all attempts to get it to work. As it would take far too much space to deal with all the various details of this program, we will have to be content with the bare minimum, so we will go no further. We are sure that any interested readers will make short work of sorting out this program and will use nothing but indirect files from now on.

Table 1

Program PRPDA3 is only used for entering the (secret) security code into file DATA3.

<table>
<thead>
<tr>
<th>Line</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>PRINT:PRINT:INPUT:INPUT CODE ";R:;C:;O:;S:O</td>
</tr>
<tr>
<td>20</td>
<td>DISK OPEN A,"DATA3",DISK GET,2</td>
</tr>
<tr>
<td>30-31</td>
<td>PRINTS6,.4:"IDISK PUT:DISK GET,2</td>
</tr>
<tr>
<td>40-42</td>
<td>PRINTS56,.4:";C;O:;S:DISK PUT:DISK CLOSE,6</td>
</tr>
</tbody>
</table>
Table 2. The banking program proper (BANK) works with two random access files DATA2 and DATA3 for which two buffers must be created after entering the instructions here.
NOVARAM: data storage without batteries

NOVARAM: data storage without batteries

The CMOS RAM could be considered the forerunner of the true non-volatile memory. It is noted for its very low quiescent current consumption, so that the data in the memory can be saved for months or even years with batteries providing the power. This is not a completely satisfactory solution, of course, but it is handy as far as it goes.

In the last few years some proper non-volatile memories have appeared, notably the EAROM (Electrically Alterable ROM) and the EEPROM (Electrically Erasable PROM). These are ROMs whose contents can be altered electrically, without the device first having to be erased by exposure to UV light, for example. An extra programming voltage is often required, but in the nearest types even that is unnecessary as a 'high voltage' generator is integrated in the chip. A single voltage of 5 V is all that is needed.

The biggest disadvantage of all these electrically re writable ROMs is the long time needed to write to them. Normally it takes about 10 ms per byte, which is very slow, compared to the few hundred nanoseconds for a normal RAM. This means that an EAROM or EEPROM is no real substitute for a RAM. A further point to remember is that these ROMs can only be 'rewritten' a certain number of times, normally about 10,000. An EAROM or EEPROM is thus entirely suitable as a transmitter memory in a tuner, for example, but its application in computers is limited.

The NOVARAM

The new NOVARAM (NOn-Volatile RAM) from the Californian firm of Xilcor is finally a step in the right direction. This IC combines the advantages of the normal RAM and the electrically re writable ROM. At the moment the NOVARAM is available in three versions: 1 K x 1 bit, 64 x 4 bit and 256 x 4 bit. The pin designations of the three types are shown in figure 1. All inputs and outputs are fully TTL compatible and only one supply voltage of 5 V is needed.

A block diagram of the NOVARAM is shown in figure 2. From this it appears that the layout is practically the same as a normal static RAM. We see that it has normal address and data lines plus a CS and WE input. The actual memory is doubled: one RAM memory location has an EEPROM counterpart. This means that each IC contains not one but two memory matrices laid one over the other. Data transfer between the two memories is controlled using two extra inputs, STORE and RECALL. Giving a pulse at the STORE input causes the IC to duplicate the total content of the RAM into the EEPROM. The IC needs a maximum of 10 ms to complete this whole duplication if a pulse is given at the RECALL input the contents of the EEPROM is written back to RAM. The time taken for this operation is about 1 ms.

This set up gives several important advantages. For normal use (as RAM memory in a computer system, for example) the NOVARAM can simply act as a normal memory and the computer does not have to take long write-times into account. When

Semiconductor manufacturers are at present investing large amounts of time (and money) into developing non-volatile memories, whereby the data is saved even in the case of the power being removed. These devices are finally about to hit the market, and the manufacturer is very confident about their success.

There is no questioning the need for non-volatile memories. Every computer user would like to be sure that his memory storage is safeguarded if the power unexpectedly fails. And how about the digital tuner in some hi-fi systems which fail to remember the transmitter frequencies if the power supply is cut off for too long? So NOVARAMs are definitely not of the 'invent them first and find a use for them later' school of electronics.
the power is switched off or fails, a single pulse is enough to store all the data in the EEPROM. In this way important data can be saved for an indeterminate time without the need for auxiliary supplies. Even though the NOVRAM suffers partly from the EPROM disadvantage of needing a certain number of write cycles, this is rarely a problem. The RAM section can be written to and read from freely. The data only needs to be written to the EEPROM section when the power is to be switched off.

The technology
The Xicor NOVRAMS use FETs with floating gates. A floating gate is an island of polysilicon surrounded by oxides. A charge can be induced on, or removed from, the gate by applying a sufficiently strong electric field to cause electron tunneling through the oxides. Under normal conditions the charge remains constant on the gates even when the power is removed. The NOVRAM uses three layers of polysilicon, the centre one being the floating gate.

The diagram of figure 3 shows one single data cell of a NOVRAM. The RAM section consists of a conventional six transistor structure, while the EEPROM section consists of the three polysilicon layers and two FETs to control the data transfer. The floating gate (POLY 2) is only connected to the rest of the circuit through capacitance. POLY 2 is charged by transferring electrons to it from POLY 1, and discharged by transferring these electrons to POLY 3. The key to the operation is in the ratios between capacitances CC2, CC3, Cp and C. When writing from RAM to EEPROM the sequence is as follows. If node N1 is low, transistor Q7 is turned off so the junction between CC2 and CC3 floats. As the total capacitance of CC2 + CC3 is larger than Cp the floating gate follows the Internal Store Voltage node. If the voltage on the floating gate is high enough electrons are tunneled from POLY 1 to POLY 2 so that the floating gate is negatively charged.

If node N1 is high, Q7 is turned on thus grounding the junction between CC2 and
CC3. As CC2 is larger than Cg, it holds the floating gate near ground when the Internal Store Voltage node is pulled high. This causes a sufficient field between POLY 2 and POLY 3 to tunnel electrons away from the floating gate to leave it with a positive charge.

The RECALL operation also takes advantage of capacitance ratios, in particular that C2 is larger than C1. When the external RECALL command is received, the internal power supply, VCC, is first pulled low to make the voltage at N1 and N2 equal. Then the supply rises again and the node with the lesser capacitance rises more rapidly than the other, and is then latched high by the flip-flop. If the floating gate has a positive charge, N2 is connected to C2 via Q8 and will latch low. If the floating gate has a negative charge, Q8 is turned off and N1 will thus latch low.

How a NOVRAM is used
Nothing needs to be said about connecting up the NOVRAM as this is almost the same as for a normal RAM. The only signals which are different are the STORE and RECALL. The RECALL pulse can be taken care of by the software in the computer. The STORE signal on the other hand can better be generated by a separate circuit. This circuit watches for power failures and, if one is detected, supplies a pulse to the NOVRAM to ensure that the data is saved. An example of such a circuit is shown in Figure 4. If the input voltage to the regulator drops, then at a certain moment the voltage at the non-inverting input of comparator A will be lower than the reference voltage at the inverting input. The output voltage then drops from +5 V to zero. This transition can be used to trigger the STORE pulse. The circuit reacts at an input voltage of about 8 V. It should be remembered that the 5 volts must remain present for at least 10 ms after the input voltage has dropped below 8 V. This is the time needed by the NOVRAM to transfer data from RAM to EEPROM. The values of the supply capacitors should be made to suit this.

This NOVRAM is quite an interesting IC, but, of course, every silver lining has a cloud, and in this case it is the higher price than ‘normal’ memories and probably the difficulty of getting hold of them. However, this is bound to change!

Literature:
Xicor application notes AN 101 . . . 103
Xicor NOVRAM Memories data sheet.
Xicor’s U.K. suppliers are:
Micro Call Ltd.
Thame Park Road
Thame
Oxon OX9 3XD
Telephone: 08442 15405
D.C. AND OPERATING CHARACTERISTICS

\(T_A = 0^\circ C \) to \(70^\circ C \), \(V_{CC} = \pm 5 \) V \(\pm 10\% \), unless otherwise specified.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Min</th>
<th>Typ(^b)</th>
<th>Max</th>
<th>Min</th>
<th>Typ(^b)</th>
<th>Max</th>
<th>Units</th>
<th>Test Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>(I_{CC})</td>
<td>Power Supply Current</td>
<td>40</td>
<td>60</td>
<td></td>
<td>35</td>
<td>50</td>
<td></td>
<td>mA</td>
<td>All Inputs = 5.5V</td>
</tr>
<tr>
<td>(I_{LL})</td>
<td>Input Load Current</td>
<td>.1</td>
<td>10</td>
<td></td>
<td>.1</td>
<td>10</td>
<td></td>
<td>(\mu A)</td>
<td>(V_{IN}) = GND to 5.5V</td>
</tr>
<tr>
<td>(I_{LO})</td>
<td>Output Leakage Current</td>
<td>.1</td>
<td>10</td>
<td></td>
<td>.1</td>
<td>10</td>
<td></td>
<td>(\mu A)</td>
<td>(V_{OUT}) = GND to 5.5V</td>
</tr>
<tr>
<td>(V_{IL})</td>
<td>Input Low Voltage</td>
<td>-1.0</td>
<td>8</td>
<td></td>
<td>-1.0</td>
<td>8</td>
<td></td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>(V_{IH})</td>
<td>Input High Voltage</td>
<td>2.0</td>
<td>(V_{CC})</td>
<td></td>
<td>2.0</td>
<td>(V_{CC})</td>
<td></td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>(V_{OL})</td>
<td>Output Low Voltage</td>
<td>.4</td>
<td></td>
<td></td>
<td>.4</td>
<td></td>
<td></td>
<td>V</td>
<td>(I_{OL} = 4.2) mA</td>
</tr>
<tr>
<td>(V_{OH})</td>
<td>Output High Voltage</td>
<td>2.4</td>
<td></td>
<td></td>
<td>2.4</td>
<td></td>
<td></td>
<td>V</td>
<td>(I_{OH} = -2) mA</td>
</tr>
</tbody>
</table>

A.C. CHARACTERISTICS

\(T_A = 0^\circ C \) to \(70^\circ C \), \(V_{CC} = \pm 5 \) V \(\pm 10\% \), unless otherwise specified.

READ CYCLE

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Min</th>
<th>Typ(^b)</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_{RC})</td>
<td>Read Cycle Time</td>
<td>300</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>(t_{A})</td>
<td>Access Time</td>
<td>300</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>(t_{CO})</td>
<td>Chip Select to Output Valid</td>
<td>200</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>(t_{OH})</td>
<td>Output Hold from Address Change</td>
<td>50</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>(t_{LZ})</td>
<td>Chip Select to Output in Low Z</td>
<td>10</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>(t_{HZ})</td>
<td>Chip Deselect to Output in High Z</td>
<td>10</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
</tbody>
</table>

WRITE CYCLE

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Min</th>
<th>Typ(^b)</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_{WC})</td>
<td>Write Cycle Time</td>
<td>300</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>(t_{CW})</td>
<td>Chip Select to End of Write</td>
<td>150</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>(t_{AS})</td>
<td>Address Set-up Time</td>
<td>50</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>(t_{WP})</td>
<td>Write Pulse Width</td>
<td>150</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>(t_{WR})</td>
<td>Write Recovery Time</td>
<td>25</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>(t_{DW})</td>
<td>Data Valid to End of Write</td>
<td>100</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>(t_{DH})</td>
<td>Data Hold Time</td>
<td>0</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>(t_{WE})</td>
<td>Write Enable to Output in High Z</td>
<td>10</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>(t_{OW})</td>
<td>Output Active from End of Write</td>
<td>10</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
</tbody>
</table>

STORE CYCLE

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Min</th>
<th>Typ(^b)</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_{ST})</td>
<td>Store Time</td>
<td>10</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>(t_{STP})</td>
<td>Store Pulse Width</td>
<td>100</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>(t_{STZ})</td>
<td>Store to Output in High Z</td>
<td>100</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>(t_{OST})</td>
<td>Output Active from End of Store</td>
<td>10</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
</tbody>
</table>

ARRAY RECALL CYCLE

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Min</th>
<th>Typ(^b)</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_{RCC})</td>
<td>Array Recall Cycle Time</td>
<td>1200</td>
<td>1000</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>(t_{RCP})</td>
<td>Recall Pulse Width</td>
<td>450</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>(t_{RHC})</td>
<td>Recall to Output in High Z</td>
<td>100</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>(t_{ROE})</td>
<td>Output Active from End of Recall</td>
<td>10</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>(t_{ARC})</td>
<td>Recalled Data Access Time from End of Recall</td>
<td>750</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
</tbody>
</table>

ABSOLUTE MAXIMUM RATINGS

- Temperature Under Bias: \(-10^\circ C \) to \(+85^\circ C\)
- Storage Temperature: \(-65^\circ C \) to \(+125^\circ C\)

Table 1. The technical specifications of the NOVRAM.
What TRS-80, LNW 80, Video-Genie, Atom, Junior Computer, Ohio owner has never dreamed of being able to connect some specialized circuit to his computer? And what about a design borrowed from another member of his micro computer club? Just think of the possibilities that opens up. That would have to be very complicated, you say. Not necessarily... read on and find out more.

bus extension

for the TRS-80 and other personal computers

It is no secret to anybody that there is a price war raging in the market for home computers. Every manufacturer tries to establish as wide a range as possible in order to sell the maximum number of extensions (their prices have fallen also, but not to the same extent as the actual computers). This can make it difficult to connect peripherals to a computer without having to buy as many connectors and cables as circuits. When we came up against this problem we decided it was time to see how the Elektor bus board could be used with other (non-Elektor) equipment.

Many specialized shops (and magazines) supply all sorts of different equipment, and

![Table 1](Image)

Table 1

<table>
<thead>
<tr>
<th>ACORN ATOM</th>
<th>TRS 80 MII LNW 80/1</th>
<th>Z80</th>
<th>6502</th>
<th>SC/MF INS 8060</th>
<th>INS 8070</th>
<th>(seen from below)</th>
</tr>
</thead>
<tbody>
<tr>
<td>+5 V</td>
<td>+5 V</td>
<td>+5 V</td>
<td>+5 V</td>
<td>+5 V</td>
<td>+5 V</td>
<td>NC</td>
</tr>
<tr>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>(-12 V)</td>
<td>-12 V</td>
<td>-12 V</td>
<td>-12 V</td>
<td>-12 V</td>
<td>-12 V</td>
<td>NC</td>
</tr>
<tr>
<td>RST</td>
<td>WAIT</td>
<td>MRYD</td>
<td>WARTX</td>
<td>RST</td>
<td>N HOLD</td>
<td>NC</td>
</tr>
<tr>
<td>D0</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>D0</td>
</tr>
<tr>
<td>D1</td>
<td>DB01</td>
<td>DB00</td>
<td>DB00</td>
<td>D800</td>
<td>D800</td>
<td>NC</td>
</tr>
<tr>
<td>D2</td>
<td>DB02</td>
<td>DB02</td>
<td>DB02</td>
<td>D802</td>
<td>D802</td>
<td>NC</td>
</tr>
<tr>
<td>D3</td>
<td>DB04</td>
<td>DB04</td>
<td>DB04</td>
<td>D804</td>
<td>D804</td>
<td>NC</td>
</tr>
<tr>
<td>D4</td>
<td>DB06</td>
<td>DB06</td>
<td>DB06</td>
<td>D806</td>
<td>D806</td>
<td>NC</td>
</tr>
<tr>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>D5</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>D6</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
</tr>
</tbody>
</table>

Notes:
11 not used by INS 8070
12 reserved for A17
13 subject to change
14 BB 2.4 = battery back up + 2.4 V
These pin designations are the universally accepted standards (taking note 3 into account, of course)

12-62
1

<table>
<thead>
<tr>
<th>64-way connector</th>
<th>TRS-80 signals</th>
<th>TRS-80 signals</th>
<th>64-way connector</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYSRES*</td>
<td>2</td>
<td>1</td>
<td>NAS*</td>
</tr>
<tr>
<td>A10</td>
<td>4</td>
<td>3</td>
<td>NC</td>
</tr>
<tr>
<td>A13</td>
<td>6</td>
<td>5</td>
<td>A12</td>
</tr>
<tr>
<td>32a</td>
<td>7</td>
<td>6</td>
<td>A10</td>
</tr>
<tr>
<td>A14</td>
<td>10</td>
<td>9</td>
<td>A11</td>
</tr>
<tr>
<td>OUT*</td>
<td>12</td>
<td>11</td>
<td>A8</td>
</tr>
<tr>
<td>INTAK*</td>
<td>14</td>
<td>13</td>
<td>WR*</td>
</tr>
<tr>
<td>NC</td>
<td>16</td>
<td>15</td>
<td>RD*</td>
</tr>
<tr>
<td>5a</td>
<td>17</td>
<td>16</td>
<td>A8</td>
</tr>
<tr>
<td>D7</td>
<td>20</td>
<td>19</td>
<td>IN*</td>
</tr>
<tr>
<td>D3</td>
<td>21</td>
<td>20</td>
<td>TEST*</td>
</tr>
<tr>
<td>D6</td>
<td>24</td>
<td>23</td>
<td>A8</td>
</tr>
<tr>
<td>D3</td>
<td>26</td>
<td>25</td>
<td>A1</td>
</tr>
<tr>
<td>9a</td>
<td>28</td>
<td>27</td>
<td>D8</td>
</tr>
<tr>
<td>D8</td>
<td>30</td>
<td>29</td>
<td>A4</td>
</tr>
<tr>
<td>25a</td>
<td>32</td>
<td>31</td>
<td>WAIT*</td>
</tr>
<tr>
<td>23a</td>
<td>34</td>
<td>33</td>
<td>A5</td>
</tr>
<tr>
<td>26a</td>
<td>36</td>
<td>35</td>
<td>D8</td>
</tr>
<tr>
<td>28a</td>
<td>38</td>
<td>37</td>
<td>5V</td>
</tr>
<tr>
<td>C</td>
<td>40</td>
<td>39</td>
<td></td>
</tr>
</tbody>
</table>

Note:
* indicates negative logic (fan input or output is "true" at the low logic level)
CAS for the LNW 80

Table 1. Here we list the relation between the pins of a 64-way connector and the signals available on some microprocessor or microcomputer buses.

Applications

This extension can be used with any personal computer (possibly with some modification with some of those we have not mentioned), but it is absolutely imperative that the output bus of the computer is buffered (with a 74LS367 in the case of the TRS-80 model I). It would be impossible to try to list all the possible circuits that could be plugged into the connectors of this bus extension. Some of the more interesting are: a speech synthesizer (SC01), sound synthesizer (1...3 AY-5-8910), EPROM programmer, all sorts of converters, real-time clock, circuit emulator. Often these various circuits have a large current consumption so it is a good idea to give the bus extension its own supply so that it can cope with these power-hungry cards. Circumstances dictate the characteristics of the supply (+ and -5 V, + and -12 V).

If such a supply is added only the earth line should be connected to the computer because the voltages supplied by the regulators will probably be slightly different and this could cause problems.

Nothing is more descriptive than an example, and we chose the TRS-80 as our guinea-pig. The signals available at the TRS-80 keyboard output connector are given in figure 1. The corresponding connections on the bus extension are illustrated in the drawing of figure 2.

Using this example you should be able to adapt this extension to any computer with a buffered output bus.

The simplest way of making this bus extension is to use a suitable printed circuit board, either the one described in the article 'new bus board for microprocessors' (January 1980, page 1-31), or the one described elsewhere in this issue. In the first case up to five connectors can be used, in the second this goes up to seven. In either case it is important that the components should be carefully located on the plug-in cards, to ensure that they can all be fitted.
Temperature controlled soldering station

In new SA-3 series temperature controlled soldering station from OK Industries is ideal for all soldering applications. Tip mounted sensors and sophisticated control circuitry ensure fast response and excellent stability within 5% over 100-500°C. Furthermore the mains powered unit comes with a special 24 V 48 W low leakage iron and is earthed for MOS and CMOS applications.

Ease of use is a feature and the tool has power and heater indicators, proportional temperature control and a temperature indicator. A variety of tips is offered. A solder spool holder, to accept any size of solder spools up to 7 in (178 mm) diameter is also available.

OK Industries UK Ltd, Dutton Lane, Eastleigh, Hants, SO5 4AA. Telephone: 0703 610944

(2772 M)

Compact rotary encoder

The Zicon 701 logic analyser

The Zicon 701 is a new 40 channel logic analyser from Zicon Instruments Ltd of Norwich. Designed for use with 8-bit and 16-bit microprocessors, its 4 clock inputs permit full analysis of multilevel and multiplexed words (such as the 8080 and 6800), to which it can be connected directly without additional probes. Its ability to decode multiplexed data simultaneously displays the address, data and status information. It records 1000 bits per channel at speeds up to 10 MHz, using separate monitors or TV sets as a display. A succession of fully interactive menus, with a flashing cursor to indicate the relevant input field, makes setting-up quick and trouble-free. Invalid data entry is blocked, and messages on screen identify the errors.

The trigger and trace capabilities of the Zicon 701 result in very flexible and precise data capture. Triggering is via a 24-bit trigger word with separate trigger qualifier and trigger count of 1 to 999 events. The clock qualifier includes a 24-bit trace facility which filters and selectively captures significant information. A delay feature allows the last trigger event to be positioned anywhere in the 1000 line memory to give a complete pre- and post-trigger analysis.

The data can be examined either (a) on screen in normal listing format or as data signatures, or (b) as hard copy printout using the RS-232C output which is fitted as standard. Transmission speeds are selectable between 300 and 4800 baud.

Data listing offers a choice of six different formats of hex and/or binary code, with either 11 or 22 displayed lines depending on the format selected. The instrument accepts a full-width 40-bit search word, and both trigger words and search words are highlighted. Scrolling by line, page, trigger word or search word greatly facilitates data location.

The instrument is compact, light (10 lbs) and portable, and thus ideally suited to field servicing and bench work alike. It is 100% British in design and manufacture. Zicon Instruments Ltd were established in 1978 as a company specializing in the design and manufacture of logic analysers. Two of their earlier models, the Zicon 620 (16 channel) and the Zicon 632 (16 channel) are still available for those users who are looking for high performance linked to low cost.

Zicon Instruments Ltd, 23 Meteor Close, Airport Industrial Estate, Norwich NR6 6HQ. Telephone: 0603 400083

(2774 M)
PCB terminal multipin capacitor
Axiom electronics limited, who already carry in-depth stocks of Sprague type 705D aluminium electrolytic capacitors, have added a multipin pcb terminal version of the device to their inventory.

In common with the other components in the range, the multipin terminal capacitor features high ripple current, low ESR, and good high frequency characteristics, and has the additional advantage of mounting straight onto the printed circuit board.

The number of pins varies between three and five, depending on the diameter of the capacitor, to give total stability. The 705D multipin configuration conforms to DIN specification.

Sprague type 705D capacitors are equivalent to the Mullard O80 series. Exceptionally stable, they are ideal for use in switch mode power supplies, instrumentation, and telecommunications equipment.

Axiom Electronics Limited,
Turnpike Road,
Cressex Estate, High Wycombe,
Bucks HP12 3NR.
Telephone: High Wycombe 442181

Photolabel introductory kit
The new 3M photolabel introductory kit from the company's industrial marking systems group allows anyone to produce brightly coloured, self-adhesive metal and plastic labels in minutes—at a fraction of the cost of having them factory-made or printed.

The kit is an ideal introduction for a company or original equipment manufacturer wanting to make its own durable, professional looking labels, signs or markings for application to a smooth surface. The only other additional item required for their production is an ultra-violet light source.

The kit’s contents include 13 sheets of photolabel material in assorted colours, matt and gloss laminating film, reversal film, developer solution and pads, an exposure guide and full instructions.

The light-sensitive emulsions are coated onto four types of base—heavy or standard gauge aluminium, and transparent or coloured polyester. The range of base and colour combinations, which include red on aluminium, black on yellow, blue on clear plastic and black on white plastic, create smart, bright labels or signs for every use.

With the kit it can take a mere five minutes to make a Photolabel—at around 4 pence per square inch.

How it works
The original artwork, which should either be a negative or a drawing on tracing paper, is placed onto the emulsion side of the selected sheet of Photolabel material, and both are then exposed to ultra-violet light. Next, the sheet of material is processed by rubbing it gently with a pad soaked in 3M developer. This entire process may be carried out in daylight—no darkroom is required.

Additional protection from damage may be given to the label by either laminating it with 3M gloss or matt laminating film. With the Photolabel’s reverse side being coated with a pressure sensitive adhesive, the completed label may be positioned on any rigid surface by simple peeling off the backing paper and pressing it into place. The new Kit permits the user to custom-make a wide range of attractive labels. Typical applications include logos, nameplates, prototype panels, wiring diagrams, charts, dial faces, control panels, electrical boxes, switching information, safety instructions, warning signs, art layouts, and a host of other labelling/signing projects.

Industrial Marking Systems Group,
3M United Kingdom PLC,
3M House,
P.O. Box 1,
Bracknell,
Berkshire RG12 1JU.
Telephone: 0344 58457

19" terminal cases
New to OK Industries’ Eirack enclosure series of enclosures, a range of 19in terminal cases has been designed for industrial, electronic, communications engineering and equipment monitor applications.

The design is modular, utilising six different kits to enable virtually any requirement to be met. Moulded from tough ABS the components include cases, extension kits, with ventilated side panels, keyboards and keyboard/displays. Components can be supplied either complete or in kit form for easy assembly.

Additionally the cases are available with front panels to accept switches or instrumentation, front panel heights being 223.5, 312.5, 402 or 490.5 mm. The standard colour is beige but other colours are available on request.

OK Industries UK Ltd.,
Outton Lane,
Eastleigh,
Hants S05 4AA.
Telephone: 0703 610944

(2807 M)
In the cut-throat world of consumer electronics, one of the questions designers apparently ponder over is “Will anyone notice if we save money by chopping this out?” In the domestic TV set, one of the first casualties seems to be the sound quality. Small speakers and no tone controls are common and this is usually quite sad, as the TV companies do their best to transmit the highest quality sound.

Given this background a compact and independent TV tuner that connects directly to your Hi-Fi is a must for quality reproduction. The unit is mains operated.

**This TV Sound TUNER offers full UHF coverage with 5 pre-selected tuning controls. It can also be used in conjunction with your video recorder. Dimensions: 11½” x 8½” x 3⅞”.

**£24.95 + £2.00 p&p.

**E.T.L. Kit version of above without chassis, case and hardware: £12.95 plus £1.50 p&p.

**PRACTICAL ELECTRONICS

**STEREO CASSETTE RECORDER KIT

£32.95 + £2.75 p&p.

- NOISE REDUCTION SYSTEM
- AUTO STOP • TAPE COUNTER • SWITCHABLE E.Q. • INDEPENDENT LEVEL CONTROLS • TWIN V.U. METER • WOOF & SLEET • 0.1% RECORD PLAYBACK I.C. WITH ELECTRONIC SWITCHING • FULLY VARIABLE RECORDING GAIN FOR ACCURATE MATCHING OF ALL TAPES

**STEREO CARTRIDGES

**PHILIPS Magnetic cartridge with diamond stylus. Model No. SP-307.1. Output: 2mV. Separation: 20dB. Stylus 0.6mm diameter.

£3.95 each plus 50p P&P.

**GARRARD Smeadon Garrard ceramic cartridge. Tonearm: With copper/axle. Output: 2mV. Separation: 20dB. Stylus 0.6mm diameter.

£2.95 each plus 50p P&P.

**SPEAKER KIT

**2 WAY 10 WATT

£8.95 less small range and 3⅛” tweeter. Complete with screws, baffle, crossover components and cabinet. Cabinet comes in flat-painted E I Y form. Plywood covered wood, size 13” x 13" x 4”. PAIR for ONLY £12.50 plus £1.75 p&p.

**AUDAX 8” SPEAKER

**HIGH QUALITY 40 WATTS RMS BASS/MIDRANGE

£5.95 + £2.20 p&p.

**MONO MIXER AMP **£45.00 + £2.00 p&p.

50 WATT Six individually mounted inputs for tape pick-ups (Cor. or mag.), two moving coil microphones and two auxiliary line inputs (tuning, organs, etc. Eight decade controls for level and two for master bass and treble, four extra treble controls for mic and aux inputs. Size: 13¾” x 13½” x 13½” approx. Power output 50 watts R.M.S. (50Ω). For use with 4 to 8 ohm speakers. Attractive black small unit with matching fascia and knobs. Ready-to-use.

Matching AKG Microphone to suit both speech and music kit. Complete with lead. ONLY £9.95 plus 75p p&p.

SPECIAL OFFER!

£13.95 plus £2.50 p&p.

This easy to build 3 band stereo AM/FM tuner kit is designed in conjunction with Practical Electronics (Only £15 kit).

For ease of construction and alignment it incorporates three integrated modules and an I.F. - F. System. FEATURES: VHF, MW, LW Bands, Interstation muting and AFC on VHF. Tuning meter. Two half printed PCBs. Ready made chassis and scale. Aerial AM Ferrite rod. FM. 75 or 300 ohms. Tubular power supply with 8C mains transformer. All components supplied are to strict E.E. specifications. Front scale size: 10¾” x 2⅞”. Approx. Complete with diagram and instructions.

**GOODMANS TWEETERS

8 ohm soft dome radiator tweeter or 3⅛” woofer. For use in up to 40W systems, with 3 element crossover. £3.95 each (plus £1.00)

£6.95 pair (plus £1.50)

**125W HIGH POWER AMP

- Modules output power: 125W
- Operating voltage (D.C.): 50 ± 80 max.
- Load: 4, 8 or 16 ohms.
- Frequency response measured at 100 watts 25Hz - 20KHz
- Sensitivity for 100 watts: 400mV ± 47K
- Typical THD: 50 watts, 4 ohms, 0.1%
- Dimensions: 205 x 90 and 150 x 36 mm.

**STEREO DECK

Stereo cassette tape deck transport with electrical sockets. Manufacturer’s surplus.

- Brand new and operational - sold without warranty.

£11.95 plus £2.50 p&p.

STereo Cassette Deck

Just requires mains transformer, p.t.o./input/socket, and a volume control to complete.

Supplied with full connection details.

**AUDAX 40W FERRO-FLUID HI-FI TWEETER

£5.50 square 8 ohm. £6.00 p&p.

**H.I.FI-TWEETER BARGAIN

£6.95 pair (plus £1.50)

**AUDAX 8” SPEAKER

£5.95 + £2.20 p&p.

**TVS VC

Special offer on all AV equipment and home cinema systems: £10.50 plus £2.00 p&p.

**ACCESSORY: Stereo/mono mains power supply kit with transformer - £6.50 plus £2.00 p&p.
RESI & TRANSI
A series of strip cartoons in book form in which two entrepreneurs characters explore the field of electronics in their own inimitable style. Their adventures are full of tension, because they often go against the current — whereby they encounter much resistance — before they reach their goal. These books familiarize the reader with electronics in an unusual way exciting, playful, yet thorough. Part I comes complete with a printed circuit board and resistor.

- Part I: Banish the Mysteries of Electronics...
 - Price: £5.75
- Part II: Hands off my Bike!
 - Price: £4.50

TV GAMES COMPUTER
This book provides a different — and, in many ways, easier — approach to microprocessors. The TV games computer is dedicated to one specific task, so the name suggests. This provides an almost unique opportunity to have fun while learning!

- Price: £6.75

DIGIBOOK
Provides a simple step-by-step introduction to the basic theory and application of digital electronics and gives clear explanations of the fundamentals of digital circuits, backed up by experiments designed to reinforce this newly acquired knowledge. Supplied with an experiment's PCB.

- Price: £6.00

300 CIRCUITS
For the home constructor — 300 projects ranging from the basic to the very sophisticated.

- Price: £5.50

MICROPROCESSOR HARDWARE
This book describes a range of peripheral equipment that can be connected and used with an assortment of personal computers, which use the 6800, 6809, 8080 or the Z80 CPU.

- Price: £7.50

JUNIOR PAPERWARE 1
Modifications of the QUADPM EPROM:
Source listings, hex dumps of the Software, memory and pause (Elektor 85, May 1982)

- Price: £2.00

JUNIOR PAPERWARE 2
Source listings of the bootstrap loader for Ohio Scientific Floppies: Hex dump of the EPROM (ES5513)

- Price: £2.00

DATA SHEET BOOK
Here is the book that designers have been waiting for: the Elektor Data Sheet Book. In 240 pages it gives you a comprehensive list of the most important IC's. A very useful and economical reference book.

- Price: £8.00

JUNIOR COMPUTER VIA 6522
This book deals with the well-known Versatile Interface Adapter (VIA) type 6522. Although it is an inexpensive addition to the four books already devoted to the Z80 computer, it is not aimed solely at junior users, but at anyone who has a Z80 system with one or more 6522's. It offers a complete familiarization with this flexible and effective component.

- Price: £3.25

JUNIOR COMPUTER BOOK 1
For anyone wishing to become familiar with microcomputers, this book gives the opportunity to build and program a personal computer at a very reasonable cost.

- Price: £6.50

JUNIOR COMPUTER BOOK 2
Follows in a logical continuation of Book 1, and contains a detailed appraisal of the software. Three major programming tools, the monitor, an assembler and an editor, are discussed with practical proposals for input and peripherals.

- Price: £6.50

JUNIOR COMPUTER BOOK 3
The next, transforming the basic, single-board Junior Computer into a complete personal computer system.

- Price: £6.50

JUNIOR COMPUTER BOOK 4
Book 4, the last in the series, describes all the software required to operate the complete system. A number of peripheral devices, such as a printer and a video terminal, may be hooked up to the computer. During the final stage in its growth, the machine is able to expand its linguistic skills, for a special version of BASIC is now available on cassette.

- Price: £6.50

301 CIRCUITS
The book is a continuation of our popular and very successful 300 circuits publication. It is composed of 301 assorted circuits, ranging from simple to more complex designs, described and explained in straightforward language.

- Price: £5.50

SC/MPUTER (1)
Describes how to build and operate your own microcomputer system — the first book of a series — further books will show how the system may be extended to meet various requirements.

- Price: £5.50

SC/MPUTER (2)
The second book in the series. An updated version of the monitor program (SC/Home) is introduced together with a number of expansion possibilities. By adding the Elekterm terminal to the system described in Book 1 the microcomputer becomes even more versatile.

- Price: £5.50

FORMAT
Completely constructional details of the Elektor Format synthesizer — comes with a FREE cassette of sounds that the Format is capable of producing together with advice on how to achieve them.

- Price: £6.00

33 ELECTRONIC GAMES
A selection of circuits which give as much enjoyment in building them as actually playing the games. The circuits are fascinating although the electronics involved are not complex, and therefore anyone with a good soldering iron will find this book satisfying. There are electronic games that do not need a TV screen, and as a result can be played just about anywhere.

- Price: £4.50

To order please use the postage paid order card in this issue.

ADD 30p P & P U.K. (OVERSEAS £1.00)
THE NEW MAPLIN CATALOGUE FOR 84!

NOW WITH PRICES ON THE PAGE

More data, more circuits, more pictures, in the brand new 480 page Maplin catalogue. Take a look at the completely revised Semiconductor section or the new Heathkit section with descriptions and pictures of dozens of kits and educational products from digital clocks to 16-bit business computers. The much expanded computer section itself, gives details of hundreds of pieces of software for Atari, BBC, Commodore 64, Dragon, Spectrum and VHS 20. In addition to all this you'll find hundreds of fascinating new items spread through the rest of the catalogue.

As always, the Maplin catalogue is tremendous value for money and now has prices on the page!

Pick up a copy at any branch of W.H. Smith or in one of our shops for just £1.35 or send £1.65 including postage to our Rayleigh address. On sale from 1st Nov 1983.

PROJECTS FOR THE HOME CONSTRUCTOR

NEW MAPLIN STORE IN SOUTHAMPTON

Opening on 1st November 1983, our new south coast store is at 46-48 Bevoys Valley Road, Southampton (Tel: 0703 25831). You will find our full range of components, projects and computers on sale. We are within easy reach of the city centre with good parking close by. Call in and see us soon.

Maplin Supplies Ltd

Mail Order: P.O. Box 3, Rayleigh, Essex SS6 6LR. Tel: Southend (0702) 552911 • Shops at: 199-161 King Street, Hammersmith, London W6, Tel: 01-748-0926 • 4 Oxford Road, Manchester. Tel: 061-336-0281 • Lynton Square, Perry Barr, Birmingham. Tel: 021-356-7392 • 38a-384 London Road, Westcliff-on-Sea Essex. Tel: 0702 554000 • 46-48 Bevoys Valley Road, Southampton. Tel: 0703 25831.

*Open 1st November 1983. All shops closed Mondays. All prices include VAT and carriage. Please add 50p handling charge to orders under £5 total value (except catalogue).